RIVM rapport 714801027/2003

Reistijden in de bodem en aanvulling van het grondwater uit het Landelijk Meetnet (LMG) en de Provinciale Meetnetten Grondwaterkwaliteit (PMG)

C.R. Meinardi

Dit onderzoek werd verricht in opdracht en ten laste van het Directoraat-Generaal Milieubeheer van het Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, Directie Bodem, Water en Landelijk Gebied (projectnummer 714801, Monitoring en Diagnose grondwater MAP-MILIEU 1998-2002) Rijksinstituut voor Volksgezondheid en Milieu (RIVM), Postbus 1, 3720 BA Bilthoven, telefoon: 030 - 274 91 11, fax: 030 - 274 29 71

Samenvatting

De reistijden van het grondwater in de bodem (in jaren) zijn onmisbaar voor het verklaren van het voorkomen van verontreinigingen in het grondwater. Gegevens over de concentraties aan tritium (³H) in monsters water uit 332 filters van 187 putten van provinciale meetnetten grondwaterkwaliteit (PMG) in Drenthe, Gelderland, Zuid-Holland en Brabant zijn gebruikt voor bepalingen van reistijden in de bodem en de aanvulling van het grondwater in de zandgebieden. Eerdere resultaten uit het landelijk meetnet zijn nogmaals samengevat. De filters van PMG liggen op een diepte van minder dan 10 tot ongeveer 25 m onder maaiveld. De tritiumconcentraties leverden waarden op voor de reistijden in de bodem en de aanvulling door de neerslag van het bemonsterde grondwater. In 45 monsters was de ³H concentratie lager dan de detectiegrens. In bepaalde gebieden komt oppervlakkige afvoer van de neerslag voor, zodat de aanvulling van het grondwater kleiner is dan het neerslagoverschot. De belangrijkste oorzaak is het voorkomen van slecht doorlatende lagen in de ondiepe bodem. De analyse van de PMG gegevens toont echter aan dat nog andere factoren een rol kunnen spelen zoals het geringe doorlaatvermogen van de ondergrond in Oost-Gelderland en in delen van De Peel en het voorkomen van Holocene kleilagen in het kustgebied. Het betreft relatief kleine gebieden, zodat de eerder gegeven beelden van de reistijden en de aanvulling van het grondwater gebaseerd op het landelijk meetnet in het algemeen geldig blijven.

Summary

Travel times of groundwater in the soil are necessary for describing and explaining data on groundwater pollution. Tritium (³H) concentrations in groundwater samples derived from provincial groundwater monitoring systems (PMG) in the Netherlands were made available by the provinces of Drenthe, Gelderland, Zuid-Holland and Noord-Brabant. Preceding results from the national monitoring system were summarised. The PMG samples came from 187 wells in regions with a sandy soil, where 332 screens were placed. The shallowest screens were at a depth of less than 10 m and the deepest ones of roughly 25 m below land surface. Elaboration yielded values for travel times in the soil and recharge by precipitation of the sampled groundwater. No determination was possible in 45 out of the 332 samples, where concentrations were below the detection limit. The investigation showed that groundwater sampled from PMG had predominantly been recharged near the observed wells (within a radius of some kilometres). Excess precipitation is discharged by surficial runoff components in certain areas, thus reducing the water available for groundwater recharge. Surficial recharge is caused by specific factors, the main reason being the presence of low permeability layers in the topsoil. Additionally, the elaboration of PMG data showed that also areas having a subsurface of low transmissivity, or the presence of Holocene clay layers in the coastal zone, might influence the occurrence of surficial runoff. The areas concerned are relatively small and their situation is well known, so that the general representation of groundwater recharge and travel times in sandy regions given before does not need revisions.

INHOUD

1.	INLEIDING	5
2.	TRITIUM IN NEERSLAG EN GRONDWATER VAN NEDERLAND	7
3.	DE PROVINCIES DRENTHE, GRONINGEN EN FRIESLAND	11
3.1.	Indeling in deelgebieden voor PMG Drenthe	11
3.2.	Noord-Drenthe	11
3.3.	Zuidwest-Drenthe	12
3.4.	Zuidoost-Drenthe	
3.5.	OVERZICHT VAN DE RESULTATEN VOOR PMG DRENTHE	
3.6.		
3.7.	De Friese Wouden	
4.	DE PROVINCIES GELDERLAND, OVERIJSSEL EN UTRECHT	19
4.1.	Indeling in deelgebieden voor PMG Gelderland	
4.2.	De Achterhoek	
4.3.	HET OOST-GELDERS PLATEAU	
4.4.	DE IJSSELVALLEI	
4.5.	DE VELUWE	
4.6.	De Gelderse Vallei	
4.7.	Omgeving van Nijmegen	
4.8.		
4.9. 4.10		
4.10		
4.12		
4.13		
5.	DE PROVINCIES NOORD-BRABANT EN LIMBURG	
5.1.	Indeling in deelgebieden voor PMG Noord-Brabant	
5.2.	HET ZANDGEBIED VAN NOORDWEST-BRABANT	
5.3.	De Meierei van Den Bosch	
5.4.	De Kempen	
5.5.	De noordelijke Peel	34
5.6.	DE RESULTATEN VAN HET PMG NOORD-BRABANT	35
5.7.	Noord- en Midden-Limburg; zuidelijke Peel	35
6.	DUINEN, GEESTGRONDEN EN WADDENEILANDEN	37
6.1.	DE PMG-PUTTEN IN DE PROVINCIE ZUID-HOLLAND	
6.2.	LMG GEGEVENS VAN DE HOLLANDSE DUINEN	
6.3.	De Zeeuwse duinen	
6.4.	LMG GEGEVENS VAN DE WADDENEILANDEN	40
7	OVERZICHT VAN DE DESULTATEN VOOR VIER PROVINCIES	41

1. Inleiding

De stroming van grondwater is het voertuig dat verontreinigingen vanaf maaiveld naar diepere delen van de bodem en het grondwater brengt. Grondwater ontstaat uit neerslag waarin tegenwoordig diverse verontreinigende stoffen zijn opgelost. Verontreinigingen aan maaiveld kunnen eveneens in oplossing gaan en met het grondwater verder stromen. Het is echter niet eenvoudig om de relatie te leggen tussen een verontreiniging van bodem en grondwater en de genoemde bronnen. Twee factoren zijn van belang om het verband vast te stellen tussen tijdafhankelijke verontreinigingen aan maaiveld en een daardoor veroorzaakte vervuiling van bodem en grondwater en omgekeerd om te bepalen of het grondwater onbelast is met verontreinigingen. Dit zijn de processen die in de bodem plaats vinden en de reistijden van grondwater en opgeloste stoffen in de bodem. Die reistijden kunnen tientallen jaren bedragen en dat is belangrijk omdat veel bronnen van verontreiniging pas sinds de jaren 1950 een grote rol zijn gaan spelen. Als de reistijden van het grondwater in de bodem bekend zijn, is het mogelijk om uitspraken te doen over:

- Waargenomen concentraties van diverse stoffen in het grondwater;
- Mogelijke processen in de bodem die naast de reistijden een rol hebben gespeeld;
- Concentraties van stoffen in onbelast grondwater.

Het doel van het onderzoek was om de reistijden van het grondwater in de bodem van de zandgebieden van Nederland vast te stellen. Een methode daarvoor is de interpretatie van de tritium (³H) concentraties in het grondwater, die gemeten zijn in de putten van het landelijk meetnet grondwaterkwaliteit (LMG) en van de provinciale meetnetten (PMG). Die gegevens zijn gebruikt voor een bepaling van de reistijden in de bodem van het bemonsterde water.

De reistijden van het grondwater uit de filters van het LMG zijn eerder geïnterpreteerd in Meinardi (1994). De uitkomsten zullen zonder nadere bespreking opnieuw worden weergegeven. Het rapport geeft aansluitend een interpretatie van de concentraties aan tritium die gemeten zijn in de putten van de PMG in Drenthe, Gelderland, Brabant en Zuid-Holland (duinen). De putten van het LMG zijn verspreid over Nederland en hebben filters op drie diepten (ruwweg op 10, 15 en 25 m onder maaiveld). De provinciale meetnetten zijn vergelijkbaar, behalve dat het meest ondiepe filter soms hoger is geplaatst. Waarnemingen van de PMG, in de provincies aangeduid in Fig. 1, zijn in het volgende nader uitgewerkt.

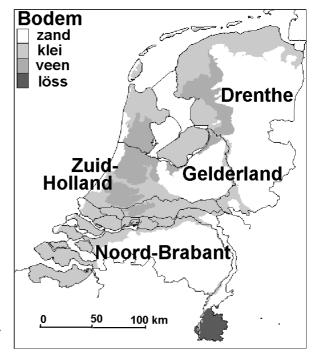


Fig. 1 De onderzochte gebieden

De aanvulling van het grondwater die uit de bepaling van de reistijden volgt, is op zichzelf van belang omdat het de motor is voor de verdere stroming van het water en de erin opgeloste stoffen. Deze eigenschap vormt echter tevens een controle op de uitkomsten omdat die ook op andere manieren kunnen worden benaderd. De aanvulling van het verzadigde grondwater (I in mm.a⁻¹) mag namelijk niet groter zijn dan het neerslagoverschot. Het neerslagoverschot is gelijk aan neerslag (P) min de werkelijke evapotranspiratie E_a (mm.a⁻¹), waarbij E_a volgt uit de potentiële verdamping E_p min de verdampingsreductie. De verdeling van P en E_p over Nederland is bekend uit metingen (KNMI) en uit hydrologische studies (Meinardi, 1994). Reducties van de verdamping treden op in droge perioden als de bodem het benodigde water niet kan leveren. De langjarig gemiddelde aanvulling van het grondwater wordt daardoor groter. De grootte van de reductie van de potentiële evapotranspiratie (RED) kan worden geschat met behulp van de HELP Tabellen (Werkgroep HELP, 1987). De reden waarom de aanvulling van het grondwater soms kleiner is dan het neerslagoverschot, is dat een deel van de neerslag (AF) over of direct onder het maaiveld kan afstromen naar de sloten. Deze oppervlakkige drainage van het neerslagoverschot draagt niet bij aan de aanvulling van het diepere grondwater. Voor de grondwateraanvulling per put geldt daarom steeds:

$$I=P-E_p+RED-AF$$
 (mm.a⁻¹)

De vergelijking van de waarden van de grondwateraanvulling uit tritiummetingen en die op basis van meteorologie en landschap, zoals hiervoor geschetst, geeft inzicht in de factoren die de grootte van RED en AF bepalen. Met die kennis is het mogelijk een overzicht te maken van de grondwateraanvulling voor het totale zandgebied en daaruit volgt een schatting van de reistijd van het grondwater van maaiveld naar elke willekeurige plaats in de bodem. De beschouwingen over de grondwateraanvulling maken dus een extrapolatie mogelijk van de reistijden die bepaald zijn uit de tritiumconcentraties in de onderzochte filters. Op basis van gegevens uit het LMG zijn voor de zandgebieden van Nederland kaarten gemaakt van de grondwateraanvulling en van de reistijden van het grondwater in de bodem voor verschillende diepten (Meinardi, 1994). Deze bewerking is hier niet herhaald, maar wel is nagegaan of de interpretatie van de gegevens uit de PMG tot vergelijkbare resultaten leidt.

Een bepaling van de reistijden van het grondwater op basis van de tritiumconcentraties is meestal niet mogelijk voor de klei- en veengebieden van Nederland. Door hierna te bespreken factoren zal tritium slechts aanwezig zijn in grondwater als de reistijd van het water in de bodem minder is dan circa 50 jaar. De gemeten concentraties in het grondwater onder klei- en veengebieden (Fig.1) zijn vaak lager dan de detectiegrens doordat het grondwater in die gebieden in het algemeen een (veel) grotere reistijd in de bodem heeft gehad dan 50 jaar. Dit houdt echter ook in dat recente verontreinigingen afwezig zijn. Grondwater in laaggelegen polders langs de Grote Rivieren vormt een uitzondering, de voeding door rivierwater heeft soms meetbare concentraties tot gevolg op korte afstand van de rivieren.

2. Tritium in neerslag en grondwater van Nederland

Tritium (³H) is een van de isotopen van waterstof en is daarmee onderdeel van het water in de natuur en dus het grondwater (Mook, 1989). Bij de stroming van grondwater door de bodem gedragen watermolekulen, die tritium bevatten, zich hetzelfde als gewoon water. Een bijzondere eigenschap van tritium is dat de concentraties geen invloed ondervinden van de evapotranspiratie (maar wel van de verdamping uit open water). De isotoop ³H is radio-actief, zodat de concentraties in water kunnen worden aangegeven als becquerel per liter (Bq.l⁻¹) Het is gebruikelijk om ze in Tritium Units (TU) uit te drukken. De halfwaarde tijd is 12.26 jaar. Het verval in de concentraties volgt daarmee uit:

```
c(t)= c(0)*exp (-0.05576*t)
met: c(0)= oorspronkelijke concentratie (TU);
c(t)= concentratie (TU) na tijd t;
t= tijd (jaar).
```

Voor de bepaling van reistijden van grondwater in de bodem worden tritiumconcentraties in het grondwater vergeleken met die in de voedende neerslag. Het verval in de concentraties heeft tot gevolg dat bij vergelijking van neerslag en grondwater steeds een referentiedatum moet worden aangegeven waarvoor de concentraties gelden. Van nature bevat de neerslag een geringe hoeveelheid tritium (ca. 5 TU). Na 1950 zijn de concentraties toegenomen. Tot 1963 veroorzaakten bovengrondse atoomproeven een toename van tritium in de neerslag. De gehalten zijn daarna geleidelijk weer afgenomen (Fig.2) door het verval en ook door opslag in het water van de oceanen. Uit een bewerking (Meinardi, 1994) bleek het volgende:

- Neerslag gewogen jaargemiddelde concentraties vertonen een regelmatig verloop;
- De concentraties nemen toe vanaf de kust naar het binnenland (regionale trend);
- In de maandgemiddelde concentraties is een seizoensfluctuatie waar te nemen.

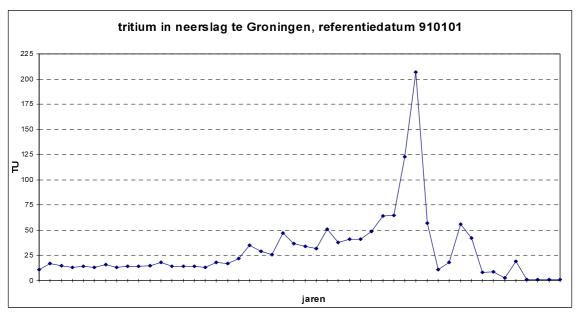


Fig. 2 Neerslag gewogen jaargemiddelde tritiumconcentraties in neerslag te Groningen

Voor de periode na 1970 kon worden beschikt over metingen door het Centrum voor Isotopen Onderzoek (CIO) te Groningen. Een bewerking leverde op dat de jaargemiddelden van de tritiumconcentraties in neerslag over de periode 1990-1997 relatief constant waren, maar wel hoger dan verwacht op grond van de trend in de waarnemingen van 1970 tot 1990. De waarschijnlijke oorzaak is dat diverse bronnen in Europa (bijvoorbeeld nucleaire installaties) nog steeds tritium in de atmosfeer brengen. De waarden in de neerslag te Groningen zijn weergegeven in Fig.2. De regionale trend over Nederland zal voor 1990-1997 waarschijnlijk niet dezelfde te zijn als voor de voorgaande periode, gezien het veronderstelde verschil in herkomst van het tritium in de atmosfeer. In principe zou ook uit de gegevens van na 1990 een regionale trend zijn af te leiden. Dit is echter om twee redenen niet verder uitgewerkt. Na 1990 is nog maar in vier stations buiten Groningen gemeten (Wieringerwerf, De Bilt, Braakman, Beek); dit is te weinig om een regionale trend vast te stellen. In de tweede plaats is het ook voor de interpretatie van de na 1990 in het grondwater gemeten waarden vooral nodig om ze te vergelijken met de concentraties in de neerslag van voor 1990 en daarbij geldt nog steeds het verband voor de eerdere periode.

De interpretatie van de PMG-metingen is gedaan met de neerslagreeks voor Groningen die het meest volledig is en die naar de rest van Nederland is geëxtrapoleerd met behulp van de in (Meinardi, 1994) gegeven regionale trend. Voor een vergelijking van de concentraties in de neerslag en die in grondwater, dat op een bepaalde plaats en datum is bemonsterd, is het nodig om een specifieke grafiek voor de neerslag te maken waarin de regionale trend (plaats) en de referentiedatum (tijd) zijn verwerkt. Voor de metingen in Drenthe (bemonstering in 1997) en in Noord-Brabant (vanaf 1992) zijn die grafieken gegeven in Fig.3 en 4.

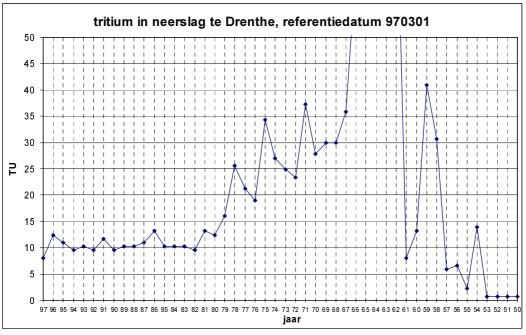


Fig. 3 Neerslag-gewogen jaargemiddelde tritium concentraties in neerslag in Drenthe voor een gegeven referentiedatum

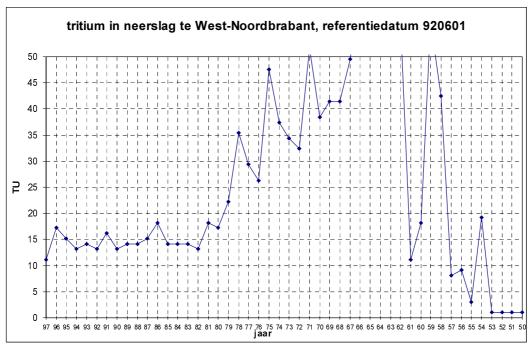


Fig. 4 Neerslag-gewogen en jaargemiddelde tritium concentraties in de neerslag van West-Noordbrabant voor een gegeven referentiedatum

Uitgangspunten voor de interpretatie van de metingen in de monsters uit de PMG zijn:

- Neerslag gewogen jaargemiddelde concentraties in de neerslag vormen de basis;
- Er is geen rekening gehouden met aanrijking door open water verdamping (interceptie);
- De regionale trend is gelijk aan de trend zoals aangegeven in (Meinardi, 1994);
- De reistijd van het water in de onverzadigde zone bedraagt ongeveer 1 jaar;
- Voor elke meetserie is het midden van de meetperiode als referentiedatum gekozen.

De waarden van de ³H concentratie zijn vergeleken met de concentraties in de neerslag met de datum van bemonstering als referentiedatum (Fig.3 en 4). Uit de vergelijking volgt het jaar van infiltratie. De periode tussen de tijd van infiltratie en van monsterneming is de reistijd van het water in de bodem. De in grondwater gemeten concentraties kunnen op meerdere tijden in neerslag voorkomen. Dit probleem kan vaak worden opgelost door ook de grondwateraanvulling te berekenen uit de bepaling van de reistijden. De aanvulling van het grondwater in de verzadigde zone (Meinardi, 1994), volgt uit:

```
I=(pD/t)*ln(D/(D-z))
met: I= aanvulling (m.a<sup>-1</sup>);
p= porositeit (p=0.35);
t= reistijd in de verzadigde zone (a)
D= dikte van de beschouwde aquifer (m);
z= diepte van het filter (m).
```

De berekende aanvulling van het grondwater moet aan twee voorwaarden voldoen:

- 1. De aanvulling mag niet groter zijn dan het neerslagoverschot.
- 2. De voor de aparte filters van één bepaalde put berekende waarden moeten overeenkomen.

Fig. 5 Het provinciale meetnet van Drenthe en de indeling in deelgebieden

3. De provincies Drenthe, Groningen en Friesland

3.1. Indeling in deelgebieden voor PMG Drenthe

Het grootste deel van de putten van het provinciale meetnet in Drenthe (Fig.5) is in het najaar van 1994 bemonsterd voor een bepaling van de ³H concentratie, maar enkele putten ook in het midden van 1997. Het gebied is opgedeeld in Noord-, Zuidwest- en Zuidoost-Drenthe op basis van verschillen in de situatie. Bodemopbouw, neerslag en verdamping kunnen in die gebieden verschillen. Storende lagen in de ondiepe bodem kunnen oppervlakkige afstroming veroorzaken die niet bijdraagt aan de aanvulling van het grondwater. In grote delen van Drenthe komt keileem voor in de ondiepe bodem. Daarnaast komt in de ondiepe bodem van de gehele provincie vrij vaak beekleem voor wat een zelfde effect kan veroorzaken. De soms herziene interpretatie van de waarnemingen in de LMG-putten (Meinardi, 1994) is steeds eerst gegeven en daarna volgt de interpretatie van de tritiumconcentraties uit PMG Drenthe.

3.2. Noord-Drenthe

Het deelgebied Noord-Drenthe omvat ruwweg het deel van de provincie dat ten noorden van Assen ligt (Fig.5). In het gebied komt veel keileem voor op een diepte van ca. 1 tot 1.5 m onder maaiveld. In het gebied wordt landbouw bedreven en ook zijn gebieden met natuurlijke vegetatie aanwezig (bouwland, gras= grasland, bos= natuurlijke vegetatie in de tabellen). Voor de interpretatie, gegeven in de Tabellen 3.3 en 3.4 en in Fig.6, is aangehouden:

gemiddelde neerslag over 1961-1990: P= 825 mm.a⁻¹ gemiddelde referentie gewasverdamping: E_r= 540 mm.a⁻¹ diepte van de hydrologische basis: D= 100 m

Tabel 3.3 Tritium waarnemingen in LMG-putten Noord-Drenthe, metingen in 1984 (fl = bovenste filter; f2 = middelste filter; f3 = onderste filter)

LMG	plaats	landgebruik	f1	f3	I/p	I	f1	f3
nr			TU	TU	$m.a^{-1}$	mm.a ⁻¹	re	istijd (a)
21	langelo	bos	51	131f2	1.14	400	10	22(f2)
22	schipborg	gras	63	<1	0.70	245	10	34
25	amen	gras	74	<1	0.49	172	17	54
26	zeijen	onbekend	74	<1	0.48	169	17	47
27	smilde	gras	<1	<1	**	**	**	**
340	degroeve	gras	25	41	1.52	533	5	25
357	de punt	gras	28	39	1.22	426	8	27

De interpretatie van PMG is gegeven in Tabel 3.4. De dikte van de doorstroomde laag (z) is gelijk aan de gemiddelde diepte van het filter onder maaiveld min 1 m (onverzadigde zone). De grondwateraanvulling volgt uit de vergelijking van Hoofdstuk 2, waarin z de doorstroomde diepte en t de totale reistijd min 1 jaar is. De grondwateraanvulling is gegeven in Fig.6. Als de meting het diepste filter betreft, kan de waarde van de aanvulling die voor het ondiepe filter is bepaald, worden gebruikt om de reistijd voor het diepste filter te berekenen . In Noord-Drenthe is de grondwateraanvulling vaak kleiner dan het neerslagoverschot zoals blijkt uit de waarden van de gemiddelde aanvulling en het potentiële neerslagoverschot. Een deel van de neerslag zal dus oppervlakkig afstromen.

	$(z = dikte\ doorstroomde\ laag;\ I = grondwateraanvulling,\ p = porositeit)$										
PMG	landgebruik	f1	f3	f1	f3	I/p	I	f1	f3		
nr		z(m)	z(m)	TU	TU	$m.a^{-1}$	mm.a ⁻¹	reistij	d (a)		
2401	bouwland	8	23	11	22	0.73	254	12	37		
2403	gras	8	23	<1	<1	**	**	**	**		
2406	gras	15	23	**	**	**	**	**	**		
2407	bouwland	11	23	11	25	0.91	317	13	33		
2408	bouwland	7	23	14	**	0.60	209	13	45		
2409	gras	8	23	11	17	0.72	252	13	37		
2411	bouwland	8	23	11	40	0.71	249	13	37		
2413	gras		23		<1	**	**	**	**		
2430	bouwland	8	21	<1	<1	**	**	**	**		
2432	bouwland	7	14	12	38	0.60	212	13	25		
2433	gras	9	24	<1	<1	**	**	**	**		
2439	bouwland	9	23	<1	<1	**	**	**	**		
2441	gras	7		16	**	0.56	196	16	**		
2442	gras	8	23	18	35	0.65	227	15	37		
2501	bos	4	28	25	<1	0.45	158	20	50		
2502	bouwland	8	23	14	<1	0.46	161	20	55		
2503	bos	12	27	15	12	0.92	322	15	34		
2504	bouwland	8	25	14	16	0.67	236	14	41		
2505	bouwland	16	30	16	29	0.75	264	33	38		

Tabel 3.4 Interpretatie tritium concentraties PMG Noord-Drenthe, najaar 1994 (z= dikte doorstroomde laag; I= grondwateraanvulling, p= porositeit)

Gemiddelde waarden berekend uit Tabel 3.4 zijn:

bos en natuur: $P-E_p = 285 \text{ mm.a}^{-1}$ $I_{gem.} = 201 \text{ mm.a}^{-1}$ $P-E_p - I_{gem.} = 84 \text{ mm.a}^{-1}$ bouwland: $P-E_p = 395 \text{ mm.a}^{-1}$ $I_{gem.} = 229 \text{ mm.a}^{-1}$ $P-E_p - I_{gem.} = 166 \text{ mm.a}^{-1}$ $P-E_p - I_{gem.} = 67 \text{ mm.a}^{-1}$

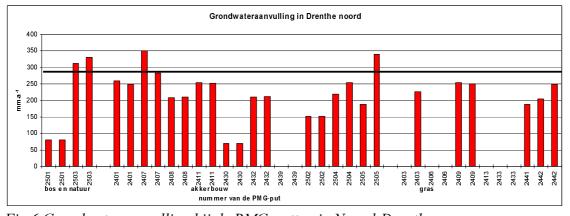


Fig. 6 Grondwateraanvulling bij de PMG-putten in Noord-Drenthe

3.3. Zuidwest-Drenthe

De bodem van Zuidwest-Drenthe vertoont veel gelijkenis met Noord-Drenthe, behalve dat de basis van de aquifer dieper ligt. Voor de interpretatie Fig.7, is aangehouden:

gemiddelde neerslag over 1961-1990: P= 825 mm.a⁻¹ gemiddelde referentie gewasverdamping: $E_r=$ 530 mm.a⁻¹ diepte van de hydrologische basis: D= 150 m

Bij de waarnemingen in Zuidwest-Drenthe zijn dezelfde procedures gevolgd als voor Noord-Drenthe. Een verschil is dat in Zuidwest-Drenthe een aantal putten in bebouwd gebied ("bebouwd" in Tabel 3.6) is geplaatst. Voorlopig mag worden aangenomen dat het bebouwde gebied in hydrologisch opzicht niet veel af zal wijken van grasland. Verder zijn in Zuidwest-Drenthe de tritiumconcentraties in beide filters een aantal malen zo laag dat geen bepaling van de reistijden mogelijk is. Deze putten staan wellicht in een kwelzone waar het grondwater niet wordt aangevuld (zie ook Fig.7).

Tabel 3.5 Tritium waarnemingen in LMG-putten Zuidwest-Drenthe, metingen in 1984 (fl = bovenste filter; f2 = middelste filter; f3 = onderste filter)

'	, 1 00,0,000			, ,	5	iic. sie jiiic.)		
LMG	plaats	landgebruik	f1	f3	I/p	I	f1	f3
nr			TU	TU	m.a ⁻¹	mm.a ⁻¹	reistij	d (a)
28	doldersum	bos	42	108	1.16	406	8	23
29	veldhuizen	gras	62	27	1.04	363	9	24
30	eemster	gras	47	1	0.97	339	12	35
41	hoogeveen	onbekend	60	30	0.90	313	9	30
42	benderse	gras	60	78	1.08	378	9	25
43	weerwille	gras	1	1	**	**	**	**
44	alteveer	gras	44	52	1.06	370	7	27
186	darp	gras	33	10	1.20	420	7	26

Tabel 3.6 Interpretatie tritium concentraties PMG Zuidwest-Drenthe, najaar 1994/1997 (z= dikte doorstroomde laag; I= grondwateraanvulling; p= porositeit)

PMG	landgebruik	f1	f3	f1	f3	I/p	I	f1	f3
nr		z(m)	z(m)	TU	TU	m.a ⁻¹	mm.a ⁻¹	reistijo	d (a)
2404	bouwland	8	23	13	37	0.60	211	13	38
2405	bebouwd	8	23	15	7	0.66	230	14	41
2410	bebouwd	8	23	13	17	0.63	220	11	33
2415	gras	8	23	1	**	**	**	**	**
2417	gras	8	23	46	24	0.44	155	28	37
2421	gras	8	23	**	**	**	**	**	**
2423	gras	8	23	20	37	0.53	187	16	38
2424	bos	8	23	20	**	1957	235	38	**
2425	bebouwd	8	22	12	1	0.64	224	13	41
2426	gras	8	23	17	23	0.55	193	15	37
2428	gras	9	23	4	**	0.23	79	41	116
2431	gras	8	23	13	26	0.59	205	13	37
2443	gras	8	23	13	1	0.53	185	16	49
2444	gras	8	23	11	43	0.70	246	12	36
2445	gras	9	23	13	1	0.59	207	16	44
2447	bouwland	8	23	10	40	0.65	226	13	38
2450	bouwland	8	23	12	11	0.55	193	16	43
2451	bos	8	23	11	50	0.66	233	13	36
2452	bos	8	23	14	30	0.58	203	16	39
2453	bos	8	23	10	13	0.64	223	13	38
2506	bos	5	25	13	31	0.78	274	8	37
2507	gras	8	24	22	**	0.44	154	16	62
2508	gras	8	25	**	**	**	**	**	**

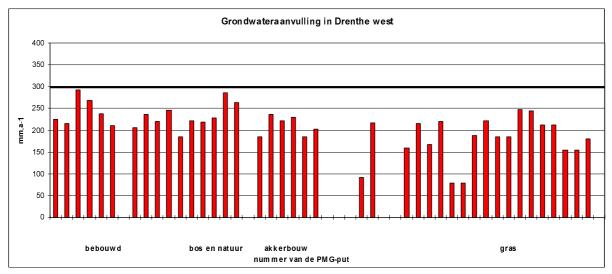


Fig. 7 Grondwateraanvulling bij de PMG-putten in Zuidwest-Drenthe

In Zuidwest-Drenthe is de grondwater aanvulling vaak (veel) kleiner dan de waarde van P- E_p doordat soms een deel van de neerslag oppervlakkig afstroomt. Uit Tabel 3.6 volgt:

bebouwd:	$P-E_p = 295 \text{ mm.a}^{-1}$	I_{gem} . = 242 mm.a ⁻¹	$P-E_p - I_{gem} = 43 \text{ mm.a}^{-1}$
bos en natuur:	$P-E_p = 295 \text{ mm.a}^{-1}$	I_{gem} . = 231 mm.a ⁻¹	$P-E_p - I_{gem} = 64 \text{ mm.a}^{-1}$
bouwland:	$P-E_p = 400 \text{ mm.a}^{-1}$	$I_{gem.} = 210 \text{ mm.a}^{-1}$	$P-E_p - I_{gem} = 190 \text{ mm.a}^{-1}$
grasland:	$P-E_{p} = 295 \text{ mm.a}^{-1}$	$I_{gem.} = 180 \text{ mm.a}^{-1}$	$P-E_p - I_{gem} = 115 \text{ mm.a}^{-1}$

3.4. Zuidoost-Drenthe

In de ondiepe bodem van Zuidoost-Drenthe is soms weinig keileem gevormd, zoals in het gebied van de Hondsrug. Op veel plaatsen in de rest van het gebied is echter beekleem in de ondiepe bodem aanwezig. De basis van het hydrologische systeem ligt hoger dan in het noorden en het westen, doordat de jongste geologische lagen vaak minder dik zijn. Voor de interpretatie, weergegeven in Tabel 3.7 en 3.8, is aangehouden:

gemiddelde jaarneerslag over 1961-1990: 750 mm.a⁻¹ gemiddelde referentie gewasverdamping: 525 mm.a⁻¹ diepte van de hydrologische basis: 80 m

Tabel 3.7 Tritium waarnemingen in LMG-putten Zuidoost-Drenthe, metingen in 1984 (fl = bovenste filter; f2 = middelste filter; f3 = onderste filter)

LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	m.a ⁻¹	mm.a ⁻¹	reistijd	(a)
23	gieterveen	grasland	1	1	**	**	**	**
32	schoonloo	bos	97	1	0.49	173	18	54
33	exloo	bouwland	13	1	0.32	111	27	84
34	dr.mond	bouwland	11	6	0.34	118	29	74
35	barger `	bouwland	1	1	**	**	**	**
36	nw.amst.	bouwland	80	1	0.50	176	17	59
37	westenes.	grasland	1	1	**	**	**	**
38	klijndijk	grasland	54	1	0.92	321	11	32
39	zweeloo	grasland	71	1	0.51	177	16	52
40	wijster	grasland	1	1	**	**	**	**
45	dalen	grasland	34	10	0.51	178	24	61
46	zwartemeer	bos	1	6	**	**	**	**

De waarnemingen van de tritiumconcentraties gemeten in het LMG en in het PMG leveren een iets verschillende interpretatie. Uit de metingen in LMG (Tabel 3.7) volgt dat voor een groot aantal putten geen bepaling mogelijk is en dat de aanvulling van het grondwater voor de overige putten relatief klein is, wat duidt op een oppervlakkige afstroming, terwijl dat voor de PMG-putten minder het geval is. Het is mogelijk dat er verschillen ontstaan tussen de putten van LMG en PMG doordat een verschillende selectie is genomen. De LMG-putten liggen vaak op en langs de Hondsrug, terwijl de PMG-putten regelmatiger over het gebied zijn verspreid. Het zou kunnen dat dit verschil in ligging leidt tot een verschillende hydrologische situatie met als gevolg dat de grondwateraanvulling verschilt.

Uit PMG waarnemingen in Zuidoost-Drenthe volgt een aanvulling van het grondwater die ongeveer gelijk is aan de waarde van P- Ep en vaak zelfs enigszins groter (Tabel 3.8). Dit betekent dat in veel gevallen vrijwel geen neerslag oppervlakkig afstroomt. De aanvulling kan groter zijn dan het verschil tussen neerslag en potentiële verdamping doordat een reductie van de verdamping optreedt die volgens de HELP-tabellen ongeveer 50 mm.a⁻¹ kan bedragen. Het verschil lijkt groot te zijn voor bouwland, maar dat is misschien schijn omdat de gemiddelde begroeiing van het als bouwland aangegeven land vermoedelijk overwegend grasland is.

Tabel 3.8 Interpretatie tritium concentraties PMG Zuidoost-Drenthe, najaar 1994/1997 (z= dikte doorstroomde laag; I= grondwateraanvulling; p= porositeit)

PMG	landgebruik	f1	f3	f1	f3	I/p	I	1	f1	f3
nr	S	z(m)	z(m)	TU	TU	m.a ⁻¹	mm.a ⁻¹		reist	ijd (a)
2402	bouwland	8	23	14	65	0.78	272		13	33
2412	bouwland	8	23	1	**	**	**		**	**
2414	bouwland	8	23	12	5	0.68	238		40	14
2416	bos	8	23	16	43	0.70	246		40	14
2418	bouwland	8	23	13	29	0.72	253		13	37
2419	bouwland	8	23	32	13	**	**		19	41
2420	bouwland	8	22	16	40	0.68	239		14	37
2422	bouwland	8	23	16	**	**	**		**	**
2427	bouwland	8	23	12	12	0.73	255		13	37
2429	bebouwd	8	22	12	8	0.67	236		13	40
2434	gras	8	23	13	6	0.68	239		13	40
2435	bouwland	8	23	1	1	**	**		**	**
2436	gras	8	23	**	**	**	**		**	**
2437	gras	8	23	11	60	0.78	275		13	33
2438	gras	8	23	17	2	0.61	214		16	41
2440	bebouwd	8	22	21	1	0.59	207		16	43
2446	bouwland	8	23	10	28	0.70	244		13	40
2448	bouwland	8	23	10	25	0.71	250		13	38
2449	bouwland	8	23	14	**	0.53	187		17	52
2509	gras	4	32	12	23	0.86	300		8	37

De gemiddelde waarden voor Zuidoost-Drenthe van aanvulling en neerslagoverschot zijn:

bebouwd:	$P-E_p = 225 \text{ mm.a}^{-1}$	I_{gem} . = 221 mm.a ⁻¹	$P-E_p - I_{gem} = +4 \text{ mm.a}^{-1}$
bos en natuur:	$P-E_p = 225 \text{ mm.a}^{-1}$	I_{gem} . = 246 mm.a ⁻¹	$P-E_p - I_{gem} = -21 \text{ mm.a}^{-1}$
bouwland:	$P-E_p = 330 \text{ mm.a}^{-1}$	I_{gem} . = 240 mm.a ⁻¹	$P-E_p - I_{gem} = +90 \text{ mm.a}^{-1}$
grasland:	$P-E_p = 225 \text{ mm.a}^{-1}$	I_{gem} . = 257 mm.a ⁻¹	$P-E_p - I_{gem} = -32 \text{ mm.a}^{-1}$

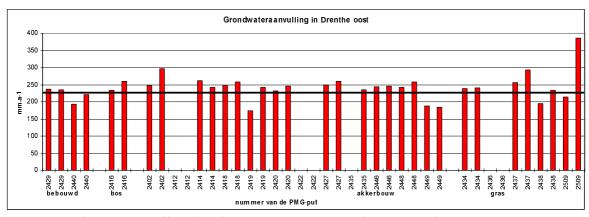


Fig.8 Grondwateraanvulling bij de PMG-putten in Zuidoost Drenthe

3.5. Overzicht van de resultaten voor PMG Drenthe

Voor de hele provincie zijn gegevens beschikbaar uit 122 filters in 62 putten van het PMG. Voor 12 putten was geen interpretatie mogelijk. Vermoedelijk zijn deze putten geplaatst in grondwater waarin opwaartse stroming optreedt zodat het een (veel) langere reistijd dan 50 jaar in de bodem heeft gehad. Voor de filters in Noord- en Zuidwest-Drenthe, waar een bepaling van de reistijd mogelijk was, bleek dat de geschatte aanvulling van het grondwater in veel gevallen lager was dan de potentiële aanvulling. De potentiële aanvulling is gelijk aan het verschil tussen de gemiddelde neerslag en de potentiële gewasverdamping, zoals bepaald uit gegevens van het KNMI en het landgebruik (Meinardi, 1994). De werkelijke aanvulling is vaak groter als geen oppervlakkige afvoer optreedt omdat in droge jaren de verdamping wordt gereduceerd door vochttekorten in de bodem (Werkgroep HELP, 1987). Dit verschijnsel blijkt uit de resultaten voor Zuidoost-Drenthe waar de uit ³H metingen geschatte aanvulling vaak enige tientallen mm.a⁻¹ groter is dan de potentiële aanvulling. Blijkbaar spelen de factoren die oppervlakkige afvoer veroorzaken, zoals met name het voorkomen van keileem en beekleem in de toplaag van de bodem, daar een minder grote rol dan in Noord- en Zuidwest-Drenthe. Voor Noord-Drenthe is dat in overeenstemming met de resultaten van het LMG, maar voor Zuidwest-Drenthe levert het LMG waarden op die relatief hoger zijn en dus meer lijken op de verwachte aanvulling van het grondwater (vergelijk Tabel 3.5 en Fig.7). Voor Zuidoost-Drenthe is het omgekeerde het geval (vergelijk Tabel 3.8 en Fig.8).

Een verklaring voor de afwijkingen tussen de LMG- en PMG-metingen is niet eenvoudig te geven. Een mogelijke verklaring is dat de hydrologische situering van de putten van LMG en PMG verschillend is. Verder blijkt ook dat de aanvulling van het grondwater in vergelijkbare gevallen ongeveer even groot is onder bouwland als onder grasland, terwijl verwacht was dat de evapotranspiratie van akkerland minder groot is dan die van gras. De reden is wellicht dat het als bouwland aangegeven land misschien vooral maïsland is dat in andere (veel langere) tijden als grasland wordt gebruikt. De gemiddelde aanvulling van het grondwater die uit de metingen kan worden afgeleid, is op de langjarig gemiddelde begroeiing gebaseerd. De geconstateerde verschillen zijn niet verontrustend aangezien het algemene beeld van aanvulling en stroming van het grondwater in Drenthe blijft gelden.

3.6. Oost-Groningen

Voor de PMG-putten in de provincie Groningen zijn geen tritiummetingen beschikbaar, maar wel van LMG (Tabel 3.9). De volgende gemiddelde waarden zijn aangehouden:

gemiddelde neerslag over 1961-1990: $P = 750 \text{ mm.a}^{-1}$ gemiddelde referentie gewasverdamping: $E_r = 550 \text{ mm.a}^{-1}$ diepte van de hydrologische basis: D = 40 m

Tabel 3.9 Tritium waarnemingen in LMG-putten Oost-Groningen, metingen in 1984 (fl = bovenste filter; f2 = middelste filter; f3 = onderste filter)

LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	m.a ⁻¹	mm.a ⁻¹	reistij	d (a)
332	ter apel	bouwland	62	1	0.66	233	14	39
333	sellingen	bouwland	63	1	1.08	378	10	31
334	musselkanaal	bouwland	58	15	1.15	403	10	28
335	stadskanaal	bouwland	31	7(f2)	0.90	313	5	31(f2)
336	ommel.wijk	bouwland	1	1	**	**	**	**
337	oude pekela	bouwland	88	1	0.53	185	18	59
338	veelerveen	bouwland	30	1	1.68	586	5	34
339	froombosch	bouwland	36	1	1.47	514	4	39
341	onnen	grasland	60	13	1.11	387	7	29
342	groningen	grasland	65	1	1.01	354	8	33
344	heineburen	bouwland?	41	1	0.86	300	12	31
355	oudezijl	onbekend	1	1	**	**	**	**
356	scharmer	bouwland	1	1	**	**	**	**

3.7. De Friese Wouden

Ook voor de PMG-putten in de provincie Friesland zijn geen tritiummetingen beschikbaar.

Waarden aangehouden bij de interpretatie van de LMG-metingen (Tabel 3.10) zijn:

gemiddelde neerslag over 1961-1990: P= 850 mm.a⁻¹ gemiddelde referentie gewasverdamping: $E_r=$ 535 mm.a⁻¹ diepte van de hydrologische basis: D= 40 m

Tabel 3.10 Tritium waarnemingen in LMG-putten Friese Wouden, metingen in 1983

(f1 = bovenste filter; f2 = middelste filter; f3 = onderste filter)

nlaats land f1 f3 I/n I

	0	, ,		, , , , , .		J)			
LMG	plaats	land	f1	f3	I/p	I	f1	f2	f3
nr		gebruik	TU	TU	m.a ⁻¹	mm.a ⁻¹	reistijo	d (a)	
156	murmerwoude	grasland	1	1	**	**	**	**	**
157	heerenveen	bebouwd	41	78	1.12	393	8	**	24
158	bergum	grasland	55	1.01	1.03	361	10	**	26
159	buitenpost	grasland	38	1	0.33	114	26	**	78
160	hoogzand	grasland	39	1	0.33	115	26	**	83
170	oranjewoud	bos	49	0.80	0.82	286	11	**	30
171	beetsterzwaag	bos	76	0.66	0.67	234	16	**	38
172	bakkeveen	grasland	37	64	1.14	399	7	**	24
173	oudehorne	grasland	42	1	0.33	114	26	**	78
175	appelscha	bos	27	46	1.38	482	6	**	24
176	oudemirdum	grasland	33	67	1.02	357	9	**	26
177	spannenburg	grasland	5	<5	**	**	**	**	**
180	nijeholtpade	grasland	74	1	0.91	317	12	**	30
	1	_		<5 1					

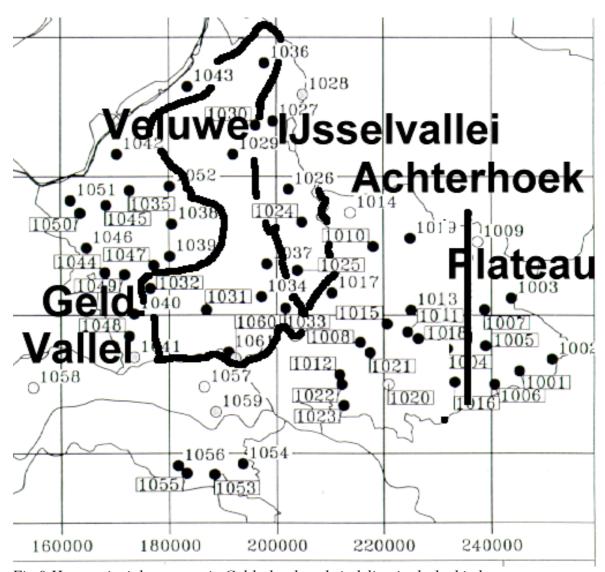


Fig. 9 Het provinciale meetnet in Gelderland en de indeling in deelgebieden

4. De provincies Gelderland, Overijssel en Utrecht

4.1. Indeling in deelgebieden voor PMG Gelderland

De indeling van de zandgebieden in Gelderland (Fig.9) volgt landschappelijke scheidingen. Bij de Achterhoek is het oostelijk deel als apart gebied aangehouden omdat daar de basis van de aquifer veel ondieper ligt. De IJsselvallei is onderscheiden van de heuvels van de Veluwe. Aan de westzijde van de Veluwe ligt de Gelderse Vallei. Ook in de omgeving van Nijmegen zijn putten van LMG en PMG gezet in gebieden met een zandige bodem. Een moeilijkheid bij de interpretatie van gegevens uit heuvelachtige gebieden is dat de stand van het grondwater vaak diep beneden maaiveld ligt. De reistijd kan wel worden bepaald, maar voor berekening van de aanvulling moet worden uitgegaan van de werkelijke diepte van het freatisch vlak. In (Meinardi, 1994) is dat gedaan voor gegevens van de Veluwe. De reistijden in die gebieden zullen hier echter worden vermeld zonder waarde voor de grondwateraanvulling.

4.2. De Achterhoek

De bodem van de Achterhoek bestaat uit zandige lagen tot een diepte die in het westen op ca. 70 m onder maaiveld ligt, maar die in het oosten kan teruglopen tot enkele meters. Ongeveer langs de lijn Aalten-Neede ligt de rand van het Oost-Gelders Plateau, waar de dikte van de aquifer over korte afstand veel kleiner wordt. Voor de interpretatie van de gegevens uit het westelijk deel (Tabellen 4.1 en 4.2) is aangehouden:

gemiddelde jaarneerslag over 1961-1990: 765 mm.a⁻¹ gemiddelde referentie gewasverdamping: 540 mm.a⁻¹ diepte van de hydrologische basis: 50-70 m

Tabel 4.1 Tritium waarnemingen in LMG-putten Achterhoek, metingen in 1982 (fl = bovenste filter; f2 = middelste filter; f3 = onderste filter)

LMG	plaats	land	f1	f3	I/p	Ι	f1	f3
nr		gebruik	TU	TU m.a-1		mm.a-1	reistija	d (a)
1	gorssel	bos	56	7	0.90	317	11	31
2	harfsen	grasland	24	6(f2)	0.85	288	10	32(f2)
3	laren	bos	45	<5	0.85	298	28	80
4	warnsveld	grasland	47	66	1.32	463	8	27
5	keyenb.	bouwland	54	<5	0.89	310	9	31
6	veldhoek	bos	62	24	0.96	338	12	31
7	vorden	bos	63	21	0.89	313	12	31
8	ruurlo	bebouwd	55	75	1.42	499	12	27
9	eibergen	grasland	65	24	0.95	330	9	31
10	lievelde	grasland	34	<5	1.00	350	10	33
12	ijzerlo	grasland	79	34	0.87	305	10	27
13	heelweg	grasland	15	7	1.14	399	13	35
14	gaanderen	grasland	35	<5	1.00	350	23	70
15	lengel	bouwland	65	23	1.13	394	9	29
16	hummelo	bouwland	84	13	1.05	367	10	31
17	didam	bebouwd	33	63	0.94	329	11	35
18	angerlo	onbekend	34	45	1.11	390	9	30
20	noorddijk	grasland	56	<5	0.91	318	11	36

	(z-a) the above to make tag, $z-a$ from a water annual true, $z-a$ for other tags.												
PMG	land	f3	f1	f3	f1	f2	f3	I/p	I	f1	f2	f3	
nr	gebr.	z(m)	z(m)	z(m)	TU	TU	TU	$m.a^{-1}$	mm.a ⁻¹	re	eistijd (a)	
1019	beb	5	13	23	16	38	46	0.77	270	9	19	33	
1020	beb	5	15	23	31	33	36	0.64	225	12	29	33	
1021	beb	6	13	23	15	43	34	0.82	288	9	19	33	
1008	bos	6	13	23	44	48	<1	0.62	219	15	33	65	
1010	bos	8	13	23	52	66	27	0.69	241	16	24	33	
1011	bos	3	14	**	20	48	**	0.83	291	5	20	**	
1022	bos		14	24	14	25	**	0.69	241	**	29	37	
1015	bwl	3	13	23	25	39	29	0.83	290	5	19	33	
1016	bwl	3	13	23	25	42	37	0.83	291	5	19	33	
1023	bwl	8	13	23	65	23	29	0.78	273	12	19	38	
1012	gras	3	12	*8	10	20	**	0.41	144	9	31	**	
1013	gras	3	13	23	20	44	27	0.81	284	5	19	33	
1018	gras	3	13	23	14	**	25	0.76	265	6	19	33	

Tabel 4.2 Interpretatie tritium concentraties PMG De Achterhoek, medio 1990 (z= dikte doorstroomde laag; I= grondwateraanvulling; p= porositeit)

In de Achterhoek is de aanvulling van het grondwater meestal groter dan P- E_p doordat een reductie van de evapotranspiratie optreedt in droge perioden. Volgens de HELP -tabellen zal de gemiddelde reductie van de verdamping ongeveer 50 mm.a⁻¹ bedragen en dat komt goed overeen met de geconstateerde verschillen (Fig.10). De oppervlakkige afvoer zal daarom gering zijn. De afwijkende waarden voor bwl zijn misschien schijn doordat het daarbij vaak om tijdelijk maisland gaat dat gemiddeld overwegend uit grasland bestaat. Gemiddelde waarden voor de Achterhoek van de aanvulling en het neerslagoverschot zijn:

bebouwd:	$P-E_p = 249 \text{ mm.a}^{-1}$	$I_{\text{gem}} = 266 \text{ mm.a}^{-1}$	$P-E_p - I_{gem} = -41 \text{ mm.a}^{-1}$
bos en natuur:	$P-E_p = 225 \text{ mm.a}^{-1}$	I_{gem} . = 277 mm.a ⁻¹	$P-E_p - I_{gem} = -52 \text{ mm.a}^{-1}$
bouwland:	$P-E_p = 330 \text{ mm.a}^{-1}$	I_{gem} . = 282 mm.a ⁻¹	$P-E_p - I_{gem} = +48 \text{ mm.a}^{-1}$
grasland:	$P-E_p = 225 \text{ mm.a}^{-1}$	$I_{\text{gem}} = 270 \text{ mm.a}^{-1}$	$P-E_p - I_{gem} = -35 \text{ mm.a}^{-1}$

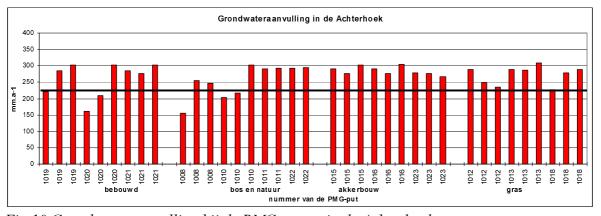
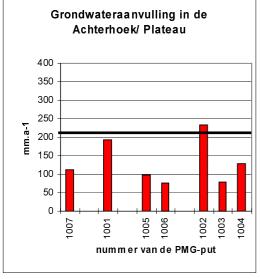


Fig. 10 Grondwateraanvulling bij de PMG-putten in de Achterhoek

4.3. Het Oost-Gelders Plateau


De dikte van de doorstroomde bodem is zeer wisselend voor het Oost-Gelders Plateau, maar over het algemeen kleiner dan 10 m. Hierdoor zijn de diepten van de filters van de PMG-putten afwijkend ten opzichte van overig Gelderland. De diepste filters ontbreken meestal. In

deze bodem is soms een storende laag aanwezig (keileem), waarmee verder geen rekening is gehouden. Voor de interpretatie van de gegevens (Tabel 4.3) is aangehouden:

gemiddelde jaarneerslag over 1961-1990: 750 mm.a⁻¹ gemiddelde referentie gewasverdamping: 535 mm.a⁻¹ diepte van de hydrologische basis: 5-10 m

Tabel 4.3 Interpretatie tritium concentraties PMG OostGelders Plateau, medio 1990 (z= dikte doorstroomde laag; I= grondwateraanvulling; p= porositeit)

			3		_	O. O			3	.	´ 🛖
put	iand	Z	Н	1	ı	put	iand	Z	Н	Ī	- 1
nr	gebr	m	TU	mm.a ⁻¹	а	nr	gebr	m	TU	mm.a ⁻¹	а
1007	beb.	3	21	113	11	1002	gras	4	16	232	8
1001	bos	6	43	193	17	1003	gras	1	21	79	5
1005	bwl.	3	30	98	14	1004	gras	3	20	129	11
1006	bwl	2	21	77	11						

De berekende waarden voor de aanvulling van het grondwater (Fig.11) zijn meestal (veel) lager dan overeenkomt met het verschil tussen neerslag en potentiële gewasverdamping. Blijkbaar komt dat doordat een relatief groot deel van de neerslag oppervlakkig wordt afgevoerd en dus niet het grondwater aanvult. Veel landbouwgronden in het gebied zijn inderdaad voorzien van drainbuizen. Daarnaast zal wellicht een deel van de neerslag door greppels naar de sloten worden gevoerd. Overigens is de precieze grondwateraanvulling niet nauwkeurig te bepalen op deze manier, daarvoor zijn de onzekerheden in de berekening te groot.

Fig. 11 Grondwateraanvulling, PMG-putten in de bodem van het Oost-Gelders Plateau

4.4. De IJsselvallei

De basis van de bovenste aquifer in de IJsselvallei bestaat uit een dikke en slecht doorlatende glaciale kleilaag. Met de stroming van het grondwater onder die laag hoeft geen rekening te worden gehouden bij de afvoer van het neerslagoverschot. De top van de kleilaag ligt vaak op een diepte van ca. 40 m onder maaiveld.

Tabel 4.4 Tritium waarnemingen in LMG-putten IJsselvallei, metingen in 1982 (fl = bovenste filter; f2 = middelste filter; f3 = onderste filter)

LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	$\mathbf{m}.\mathbf{a}^{-1}$	mm.a ⁻¹	reistijd	(a)
381	busslo	onbekend	45	1	1.00	352	10	37
382	apeldoorn	bebouwd	50	85	1.27	444	8	29
383	lieren	bouwland	55	30	1.05	369	10	35
385	terwolde	grasland	44	1	1.08	380	10	31
386	hattem	grasland	43	7	1.08	379	9.5	34

Voor de interpretatie (Tabel 4.4 en 4.5) is aangehouden: gemiddelde jaarneerslag over 1961-1990: 825 mm.a⁻¹ gemiddelde referentie gewasverdamping: 535 mm.a⁻¹ diepte van de hydrologische basis: 40 m

Tabel 4.5 Interpretatie van de tritium concentraties PMG in de IJsselvallei, medio 1990 (z= dikte doorstroomde laag; I= grondwateraanvulling; p= porositeit)

PMG	land	f3	f1	f3	f1	f2	f3	I/p	I	f1	f2	f3
nr	gebr.	z(m)	z(m)	z(m)	TU	TU	TU	$m.a^{-1}$	mm.a ⁻¹	re	eistijd (a)
1024	bos	6	13	**	25	37	**	0.61	215	12	29	**
1033	bos	**	9	23	18	29	**	0.91	317	**	12	33
1027	gras	3	9	**	29	44	**	0.30	106	12	33	**
1037	bwl	6	13	23	20	14	33	0.85	297	10	30	37
1025	bwl	4	13	**	13	20	**	0.61	215	7	31	**
1026	bwl	3	11	**	10	16	**	0.58	203	6	29	**

Gemiddelde waarden voor de IJsselvallei van de aanvulling en het neerslagoverschot zijn:

De interpretatie levert in dit geval op dat de aanvulling van het grondwater kleiner is dan het verschil tussen neerslag en de potentiële verdamping. Wellicht is dat weer een gevolg van het optreden van oppervlakkige afvoer. Aan deze conclusie moet echter niet teveel waarde worden gehecht aangezien met name de neerslag niet nauwkeurig kan worden bepaald. Ook voor de IJsselvallei geldt waarschijnlijk dat veel land dat als bouwland wordt aangemerkt overwegend grasland is dat tijdelijk als bouwland (mais) wordt gebruikt. Verder is het aantal waarnemingen in de onderscheiden categorieën steeds betrekkelijk laag, wat aan de betrouwbaarheid van uitspraken geen goed doet.

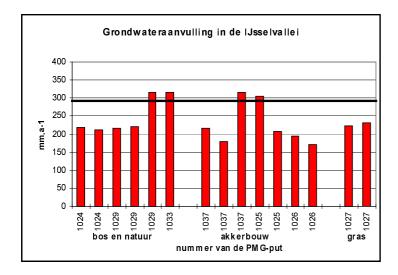


Fig. 12 Grondwateraanvulling, PMG-putten IJsselvallei

4.5. De Veluwe

De waarden voor neerslag en werkelijke verdamping variëren sterk voor de Veluwse heuvels en de stand van het grondwater ligt diep onder maaiveld. De bepaling van de aanvulling is niet erg betrouwbaar voor de diverse meetnetputten. De reistijden van het grondwater in de bodem kunnen echter wel eenvoudig worden bepaald (Tabellen 4.6 en 4.7).

Tabel 4.6	Tritium waarnemingen in LMG-putten Veluwe, metingen in 1982
	($f1 = bovenste\ filter$; $f2 = middelste\ filter$; $f3 = onderste\ filter$)

	V	, , , , , , ,	<i>j</i> –		, , ,	,		
LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	$m.a^{-1}$	mm.a ⁻¹	reistijd	(a)
364	harderwijk	bos	49	1	0.60	210	9	32
366	nunspeet	bos	44	78	0.88	309	5.3	22
372	ouwendorp	bouwland	38	38	1.38	484	4.3	25
374	ermelo	bos	16	11	0.84	292	3.3	30
375	ktw.broek	onbekend	63	1	0.58	205	9	37
377	ede	bouwland	51	79	1.01	354	5.3	22
378	renkum	bos	20	10 (f2)	0.82	288	8.3	30 (f2)
379	oud reemst	bos	53	66	0.87	304	8.3	22
380	laagsoeren	bos	20	33	0.88	309	5.3	26
384	arnhem	industrie	39	59	1.03	362	3.3	23
387	arnhem	bebouwd	65	15	0.82	287	11	27

Tabel 4.7 Interpretatie van de tritium concentraties PMG In de Veluwe, medio 1990

PMG	land	f3	f1	f3	f1	f2	f3	I/p	I	f1	f2	f3
nr	gebr.	z(m)	z(m)	z(m)	TU	TU	TU	m.a ⁻¹	mm.a ⁻¹	re	eistijd (a)
1029	bos	6	13	23	23	89	34	0.72	251	11	24	33
1030	beb.	3	8	17	22	37	57	0.66	230	5	15	32
1031	bos	**	**	23	32	**	**	0.87	303	**	**	29
1034	bos	**	**	38	**	**	<5	**	**	**	**	**
1035	bos		13	**	**	47	**	0.62	217	**	23	**
1036	bos	**	**	25	**	**	52	0.83	290	**	**	33

4.6. De Gelderse Vallei

De Gelderse Vallei ligt in een voormalig glaciaal dal dat is opgevuld met fluvioglaciale afzettingen en afspoelingmateriaal uit de omgeving. Deze afzettingen zijn veelal relatief doorlatend, maar ze worden in grote delen van de vallei afgedekt door een mariene kleilaag uit de Eemperiode met daarop dekzand uit de periode erna. De top van de kleilaag fungeert als basis voor het bovenliggende hydrologische systeem. Die ligt op een diepte van ca. 20 m onder maaiveld. De Eemklei is niet volledig ondoorlatend waardoor op sommige plaatsen kwel optreedt. Op die plaatsen is een goed ontwikkeld drainagesysteem aanwezig zodat oppervlakkige afvoer kan plaats vinden. De kleilaag ontbreekt aan de randen en in het zuiden van het gebied en daar ligt de basis dieper. Voor de interpretatie is aangehouden:

gemiddelde jaarneerslag over 1961-1990: 825 mm.a⁻¹ gemiddelde referentie gewasverdamping: 540 mm.a⁻¹ diepte van de hydrologische basis: 15-70 m

Tabel 4.8	Interpretatie van de tritium concentraties PMG Gelderse Vallei, medio 1990
	$(z = dikte\ doorstroomde\ laag;\ I = grondwateraanvulling;\ p = porositeit)$

PMG	land	f3	f1	f3	f1	f2	f3	I/p	I	f1	f2	f3
nr	gebr.	z(m)	z(m)	z(m)	TU	TU	TU	$m.a^{-1}$	mm.a ⁻¹	re	eistijd (a	a)
1040	beb.	3	13	23	15	35	99	0.74	259	6	19	33
1041	beb.	5	13	**	<5	<5	**	**	**	**	**	**
1042	beb.	3	13	**	23	15	**	0.90	315	5	31	**
1051	beb.	3	13	**	17	22	**	0.88	308	5	29	**
1032	bos	**	**	23	**	**	16	0.74	259	**	**	37
1050	bwl	3	13	**	13	44	**	0.69	243	6	29	**
1038	bwl		13	**	**	20	**	0.73	256	**	30	**
1039	bwl	6	13	21	22	46	43	0.67	233	11	23	33
1049	bwl	6	13	23	17	50	41	0.81	284	9	20	33
1052	bwl	5	11	18	28	38	35	0.57	199	13	19	33
1044	gras	3	11	0	33	13	**	0.34	118	14	37	**
1047	gras	5	14	0	14	44	**	0.77	270	9	29	**
1048	gras	5	10	0	21	63	**	0.60	211	11	23	**
LMG	Em.h	7	**	23	33	**	1	1.02	358	8	**	34
329	berg											

Uit Fig.13 blijkt dat de waarden van de aanvulling in een aantal gevallen kleiner zijn dan overeenkomt met het gemiddelde verschil van neerslag en de potentiële gewasverdamping. Ook voor dit gebied geldt dat het land dat als bwl wordt gebruikt voor een groot deel eigenlijk grasland is dat tijdelijk met mais is bebouwd. Dit betekent dat soms een deel van de neerslag oppervlakkig zal worden afgevoerd, zoals op basis van de aard van de drainage al was verondersteld. Gemiddelde waarden van aanvulling en neerslagoverschot zijn

 $P-E_n = 285 \text{ mm.a}^{-1}$ I_{gem} . = 269 mm.a⁻¹ $P-E_{p} - I_{gem} = 16 \text{ mm.a}^{-1}$ bebouwd: $P-E_p = 285 \text{ mm.a}^{-1}$ I_{gem} . = onbepaald $P-E_p - I_{gem}$. = onbepaald bos en natuur: $P-E_p - I_{gem} = 135 \text{ mm.a}^{-1}$ $P-E_p = 395 \text{ mm.a}^{-1}$ I_{gem} . = 260 mm.a⁻¹ bouwland: $P-E_p - I_{gem} = 50 \text{ mm.a}^{-1}$ $P-E_p = 285 \text{ mm.a}^{-1}$ $I_{gem.} = 235 \text{ mm.a}^{-1}$ grasland:

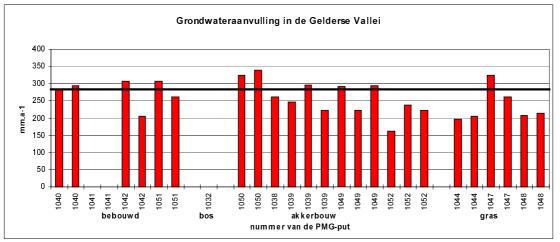


Fig. 13 Grondwateraanvulling, PMG-putten in het oosten van de Gelderse Vallei

4.7. Omgeving van Nijmegen

De zandgebieden in de omgeving van Nijmegen zijn zeer verschillend van aard. De stad Nijmegen zelf is op de rand van een stuwheuvel gebouwd, maar in de omgeving zijn ook zandige opduikingen in het rivierengebied aanwezig van een soms aanzienlijke omvang (bijvoorbeeld de rug waarop Wijchen is gebouwd). Het zijn voormalige rivierduinen die verder naar het westen donken worden genoemd. De bodem bevat in het algemeen fijner zand dan in de stuwheuvels aanwezig is. Ook in deze gebieden kan het grondwater (veel) dieper dan 1m onder maaiveld liggen. In beide typen gebieden zijn putten geplaatst van het PMG. Vanwege dezelfde redenen als genoemd bij de Veluwe geldt dat relatief eenvoudig waarden kunnen worden bepaald voor de reistijden van het water in de bodem, maar niet voor de aanvulling van het grondwater. Geschatte reistijden zijn opgenomen in Tabel 4.9.

Tabel 4	<i>4.9</i>	Interpi	retatie	van de	tritiun	n conce	ntraties	s PMG l	bij Nijmeg	gen, m	edio 19	90
PMG	land	f3	f1	f3	f1	f2	f3	I/p	I	f1	f2	f3
nr	gebr.	z(m)	z(m)	z(m)	TU	TU	TU	$m.a^{-1}$	mm.a ⁻¹	re	eistijd (a)
1053	bos	10	18	**	25	34	**	0.89	312	12	29	**
1054	bwl	**	16	23	**	16	19	0.73	256	**	30	37
1055	bos	5	13	23	20	29	<5	0.55	192	10	29	56
1056	bwl	4	13	**	17	24	**	0.75	263	5	29	0

4.8. Overzicht van de resultaten voor PMG Gelderland

Voor de zandgebieden in de provincie Gelderland zijn gegevens beschikbaar uit 103 filters in 50 putten van het PMG. De concentraties die voor 7 filters zijn bepaald zijn zo laag, dat geen interpretatie mogelijk is. Vermoedelijk zijn deze filters geplaatst in een situatie waar het grondwater een (veel) langere reistijd dan 50 jaar in de bodem heeft gehad, doordat kwel optreedt, of doordat de vertikale snelheden van de stroming zeer gering zijn. De aanvulling van het grondwater in de Achterhoek is vrijwel gelijk aan het gemiddelde overschot aan neerslag als rekening wordt gehouden met de potentiële evapotranspiratie en mogelijke reducties daarvan als gevolg van vochttekorten door droogte (HELP-tabellen van Werkgroep HELP, 1987). In dat gebied vindt naar verwachting nauwelijks oppervlakkige afvoer van het neerslagoverschot plaats. Overtollige water wordt via de watervoerende pakketten afgevoerd.

Oppervlakkige afvoer zal optreden in het gebied van het Oost Gelders Plateau. De bodem in dat gebied heeft een gering doorlaatvermogen en een deel van de landbouwgronden is er gedraineerd met buizen, zodat het voorkomen van oppervlakkige componenten van de afvoer inderdaad aannemelijk is. Ook in de IJsselvallei zou volgens de interpretatie van de metingen oppervlakkige afvoer moeten optreden. Delen van dat gebied hebben inderdaad een bodem met een relatief gering doorlaatvermogen, maar in het algemeen staat het gebied toch niet bekend als een nat gebied. Toch laten de metingen nauwelijks een andere conclusie toe. Van de Gelderse Vallei is wel bekend dat het een nat gebied is en ook dat het doorlaatvermogen van de bodem in het algemeen relatief zeer klein is. Daarom is het niet verwonderlijk dat de metingen aangeven dat in de Gelderse vallei een aanzienlijk deel van het neerslagoverschot oppervlakkig zal worden afgevoerd. Ook voor de landbouwgronden in de zandgebieden van de provincie Gelderland blijkt dat de aanvulling van het grondwater ongeveer even groot is

onder grasland als onder bouwland. Dit heeft waarschijnlijk dezelfde reden als in de provincie Drenthe, namelijk dat veel bouwland een tijdelijk karakter heeft en lange tijd ook grasland is.

4.9. Noord-Overijssel

Voor de PMG-putten in de provincie Overijssel zijn geen tritiummetingen beschikbaar. De metingen in de LMG-putten zijn opgenomen in de Tabellen 4.10 tot en met 4.14. Bij de interpretatie voor Noord-Overijssel zijn de volgende gemiddelde waarden aangehouden:

gemiddelde neerslag over 1961-1990: P= 800 mm.a⁻¹ gemiddelde referentie gewasverdamping: $E_r=$ 540 mm.a⁻¹ diepte van de hydrologische basis: D= 100 m

Tabel 4.10 Tritium waarnemingen in LMG-putten Noord-Overijssel, metingen in 1982/83 $(fl = bovenste\ filter; f2 = middelste\ filter; f3 = onderste\ filter)$

LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	m.a ⁻¹	mm.a ⁻¹	reistijd	(a)
194	kampen	bebouwd	49	83	1.10	384	8	25
196	engelse werk	onbekend	61	31	1.03	361	9	23
197	zwolle	bebouwd	43	43	1.16	407	8	23
198	stjansklooster	onbekend	55	46	1.00	350	9	23
199	rouveen	grasland	48	1	0.80	280	11	33
200	staphorst	bebouwd	55	1	0.78	271	11	33
201	punthorst	bos	78	45	1.07	374	8	26
202	dalfsen	grasland	63	1	0.99	347	8	30
204	witharen	bos	99	5	0.78	271	11	33
205	dedemsvaart	grasland	80	1	1.03	359	8	30

4.10. Salland

Bij de interpretatie voor Salland zijn als gemiddelde waarden aangehouden:

gemiddelde neerslag over 1961-1990: $P = 800 \text{ mm.a}^{-1}$ gemiddelde referentie gewasverdamping: $E_r = 530 \text{ mm.a}^{-1}$ diepte van de hydrologische basis: D = 50 m

Tabel 4.11 Tritium waarnemingen in LMG-putten Salland, metingen in 1982/83

LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	m.a ⁻¹	mm.a ⁻¹	reistijo	l (a)
209	windesheim	grasland	51	1	0.78	272	11	35
210	wijhe	bebouwd	25	1	0.36	126	23	78
211	rechteren	bos	58	1	1.04	362	8	30
212	raalte	grasland	58	1	1.00	350	8	30
213	eikelhof	grasland	57	18	1.18	412	8	26
214	deventer	bebouwd	62	18	1.21	424	9	26
215	dijkerh.	grasland	45	8	1.09	381	8	30
217	lemele	bos	42	86	1.31	458	7	25

4.11. Centraal Overijssel

Bij de interpretatie voor Centraal Overijssel zijn als gemiddelde waarden aangehouden:

gemiddelde neerslag over 1961-1990: $P = 775 \text{ mm.a}^{-1}$ gemiddelde referentie gewasverdamping: $E_r = 530 \text{ mm.a}^{-1}$ diepte van de hydrologische basis: D = 40 m

Tabel 4.12 Tritium waarnemin	igen in LMG-putten Centraal Overijssel, metingen in 1982/83
$(fl = bovenste\ filter;$	f2= middelste filter; $f3$ = onderste filter)

LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	$m.a^{-1}$	mm.a ⁻¹	reisti	jd (a)
206	den ham	grasland	<5	<5	**	**	**	**
207	kloosterham	bouwland	7	5	**	**	**	**
216	nijverdal	bos	55	1	0.91	318	11	33
218	hellendaal	grasland	24	<5	0.96	336	33	80
226	markelo	grasland	46	1	1.04	363	7	30

4.12. Twente

Bij de interpretatie voor Twente zijn als gemiddelde waarden aangehouden:

gemiddelde neerslag over 1961-1990: $P = 750 \text{ mm.a}^{-1}$ gemiddelde referentie gewasverdamping: $E_r = 525 \text{ mm.a}^{-1}$ diepte van de hydrologische basis: D = 30 m

Tabel 4.13 Tritium waarnemingen in LMG-putten Twente, metingen in 1982/83 $(fl = bovenste\ filter; f2 = middelste\ filter; f3 = onderste\ filter)$

LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	m.a ⁻¹	mm.a ⁻¹	reistijd	l (a)
220	vasse	grasland	59	5	0.97	341	9	30
221	almelo	bebouwd	136	1	0.40	141	22	68
222	weerselo	grasland	18	1	0.56	194	23	73
223	hengelo	bouwland	59	25	0.94	327	9	30
224	enschede	bos	54	1 (f2)	0.68	238	11	30 (f2)
225	denekamp	bebouwd	40	1	1.38	482	7	30
227	de lutte	bos	64	1	1.10	386	9	31

4.13. Oost-Utrecht en het Gooi

Voor de PMG-putten in de provincie Utrecht zijn geen tritiummetingen beschikbaar. De metingen in de LMG-putten zijn opgenomen in Tabel 4.14. Bij de interpretatie voor de metingen in Oost-Utrecht en het Gooi zijn de volgende waarden aangehouden:

gemiddelde neerslag over 1961-1990: P= 825 mm.a⁻¹ gemiddelde referentie gewasverdamping: $E_r=$ 540 mm.a⁻¹ diepte van de hydrologische basis: D= 100 m

Tabel 4.14 Tritium waarnemingen in LMG-putten Oost-Utrecht, metingen in 1983 (f1= bovenste filter; f2= middelste filter; f3= onderste filter)

LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	m.a ⁻¹	mm.a ⁻¹	reistij	d (a)
276	hilversum	bos	73	1	0.93	324	9	30
277	hilversum	onbekend	56	81	1.10	385	8	24
278	laren	bebouwd	91	14	0.77	270	16	30
319	groenekan	grasland	66	68	1.05	369	8	26
324	soesterveen	grasland	65	31	0.89	312	12	25
325	amersfoort	onbekend	41	1	0.86	302	23	35
326	bilthoven	bebouwd	55	82	1.07	375	10	24
327	doorn	bos	54	103	1.16	405	8	22

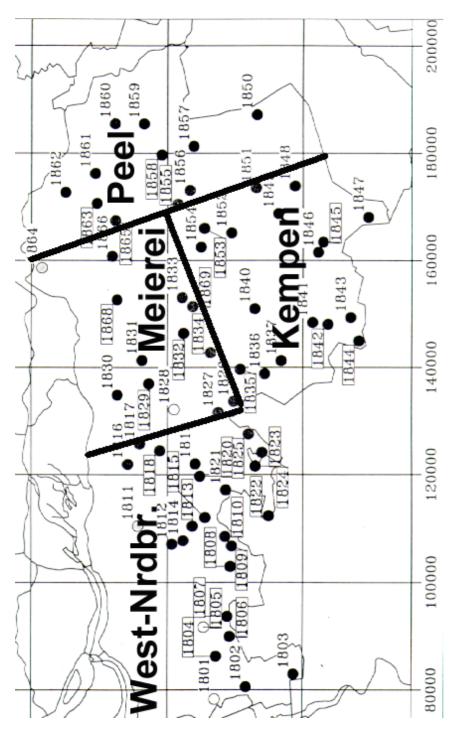


Fig. 14 Het provinciale meetnet in Noord-Brabant en de indeling in deelgebieden

5. De provincies Noord-Brabant en Limburg

5.1. Indeling in deelgebieden voor PMG Noord-Brabant

De hydrologische indeling van de watervoerende pakketten in Noord-Brabant volgt de hydrogeologische structuur van de bodem. Door de aanwezigheid van de Centrale Slenk ontstaan verschillen in de opbouw van de bodem en de hydrologie. De Centrale Slenk is opgedeeld in een noordelijk deel, de Meierei (van Den Bosch) en een zuidelijk deel, de Kempen (Fig. 14). Het noordelijke gebied is in het algemeen relatief nat, terwijl de Kempen droger is. In het zuiden ligt de hydrologische basis hoger en is de ondiepe bodem anders. Ten westen van de Centrale Slenk is Noordwest-Brabant onderscheiden en ten oosten ervan de Peel. Eigenlijk kan verder naar het oosten nog een apart gebied worden onderscheiden, maar het aantal waarnemingen is daar zo gering dat die streek bij de Peel is gerekend.

5.2. Het zandgebied van Noordwest-Brabant

Noordwest-Brabant bestaat voor een deel uit gebieden waar aan de oppervlakte een ondiepe kleilaag aanwezig is. PMG-putten in het kleigebied zijn buiten beschouwing gelaten omdat de ³H concentraties in het grondwater te laag zijn voor een bepaling van de reistijd. Het gebied ten zuiden ervan heeft tot op grote diepte een zandige bodem omdat ook de oudere geologische afzettingen uit het Tertiair zandig zijn ontwikkeld. Jongere Pleistocene formaties ontbreken echter vrijwel doordat ze bijna niet zijn afgezet, behalve de Formatie van Twente. In de ondiepe bodem zijn soms slecht doorlatende lagen aanwezig (Formaties van Tegelen en Kedichem). Oppervlakkige afstroming van het neerslagoverschot kan de aanvulling van het grondwater doen verminderen. Voor de interpretatie (Tabel 5.1 en 5.2) is gebruikt:

gemiddelde jaarneerslag over 1961-1990: 800 mm.a⁻¹ gemiddelde referentie gewasverdamping: 565 mm.a⁻¹ diepte van de hydrologische basis: 120 m

Tabel 5.1 Tritium waarnemingen in LMG-putten West Noord-Brabant, metingen in 1983 (fl = bovenste filter; f2 = middelste filter; f3 = onderste filter)

	01 00,0000	, j=		<i>j</i> ,	,,,	Tree of	, ,		
LMG	plaats	land	f1	f3	I/p	I		f1	f3
nr		gebruik	TU	TU	$m.a^{-1}$	mm.a ⁻¹		reistij	d (a)
135	oosterhout	bouwland	94	1	0.42	148		16	58
136	dorst	bos	79	46	0.97	339		8.5	26
139	oosteind	grasland	1	8	**	**		**	**
140	rijen	grasland	46	1	0.42	145		22	63
141	halsteren	bouwland	1	1	**	**		**	**
142	wouw	bouwland	1	1	**	**		**	**
143	bergen op zoor	nbos	**	**	**	**	**	**	**
144	schijf	bos	72	74	1.00	350		9	25
146	achtmaal	grasland	32	13	1.13	395		4	26
147	rijsbergen	grasland	37	1	0.30	105		23	83
148	etten-leur	onbekend	30	49	1.00	348		7	26
149	breda	onbekend	55	18	0.97	338		2	22
150	baarle nassau	grasland	37	**	0.98	344		5	30
151	gilze	bouwland	43	1	0.71	249		7	30

Tabel 5.2	Interpretatie van tritium concentraties in PMG-Noordwest-Brabant, 1992
	$(z = dikte\ doorstroomde\ laag;\ I = grondwateraanvulling;\ p = porositeit)$

PMG	landgebruik	f1	f3	f1	f3	I/p	I	f1	f3
nr		z(m)	z(m)	TU	TU	$m.a^{-1}$	mm.a ⁻¹	reistijo	d (a)
1801	bebouwd	13	**	18	**	0.45	159	31	**
1805	bebouwd	9	**	33	**	0.58	203	17	**
1809	bos	13	**	1	**	0.34	120	41	**
1812	bos	10.5	**	47	**	0.53	186	22	**
1820	bos	3	13	11	44	0.62	215	7	21
1824	bos		22		46	0.79	278	**	31
1804	bouwland	14.2	**	26	**	0.50	174	31	**
1808	bouwland	8	24	35	3	0.64	225	15	40
1811	gras	4	21	16	49	0.66	231	8	34
1815	gras		24.5		18	0.71	250		39
1816	gras	14	**	17	**	0.48	169	32	**
1819	gras		23		<1	**	**	**	**
1821	gras	12	**	20	**	0.41	144	32	**
1806	intens. veeh.	13	**	22	**	0.45	156	32	**
1807	intens. veeh.	7	23	19	30	0.68	238	13	35
1810	intens. veeh.	3	12	21	2	0.43	151	7	40
1818	intens. veeh.	4	15	< 0.6	<1	**	**	**	**
1822	intens. veeh.	5	15	19	<1	0.41	144	13	43
1823	intens. veeh.	7	17	27	6	0.51	180	14	39
1825	intens. veeh.	4	22	<1.5	<1	**	**	**	**
1813	tuin	4	13	48	<1.8	0.30	106	18	39
1814	tuin	8	23	46	<1	0.48	167	19	53

Een relatief groot deel van Noordwest-Brabant is ingericht voor de intensieve veehouderij ("intens veeh" in Tabel 5.2), vermoedelijk met gras als overheersende vegetatie. In het gebied wordt veel tuinbouw toegepast ("tuin"). Het potentiële overschot aan neerslag is betrekkelijk laag, maar de aanvulling van het grondwater blijkt nog lager te zijn (Fig.15), vermoedelijk doordat een deel van het water oppervlakkig wordt afgevoerd. De gemiddelde waarden zijn:

 $P-E_p - I_{gem} = 32 \text{ mm.a}^{-1}$ $P-E_p = 235 \text{ mm.a}^{-1}$ I_{gem} . = 203 mm.a⁻¹ bos en natuur: $I_{gem.} = 208 \text{ mm.a}^{-1}$ $P-E_p - I_{gem} = 142 \text{ mm.a}^{-1}$ $P-E_n = 350 \text{ mm.a}^{-1}$ bouwland: I_{gem} . = 170 mm.a⁻¹ $P-E_n = 235 \text{ mm.a}^{-1}$ $P-E_n - I_{gem.} = 65 \text{ mm.a}^{-1}$ grasland: $P-E_p = 235 \text{ mm.a}^{-1}$ $P-E_p - I_{gem} = 98 \text{ mm.a}^{-1}$ $I_{gem.} = 137 \text{ mm.a}^{-1}$ tuinbouw:

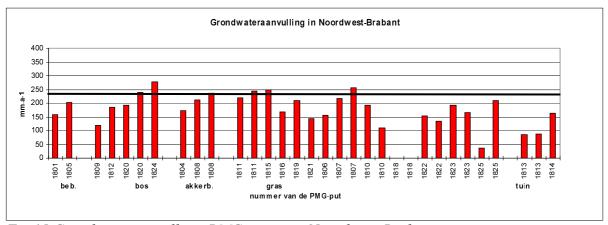


Fig. 15 Grondwateraanvulling, PMG-putten in Noordwest-Brabant

5.3. De Meierei van Den Bosch

Het noordelijk deel van de Centrale Slenk is een nat gebied doordat het relatief laag gelegen is. Een aantal beken komt samen nabij Den Bosch. In het zuidelijk deel van dat gebied zijn afzettingen van de Nuenen Groep in vrij dikke lagen (soms meer dan 20 m) aanwezig. Deze doorlatende lagen bemoeilijken de infiltratie van het neerslagoverschot, maar die wordt niet volledig verhinderd. De hydrologische basis van het onderliggende watervoerende pakket ligt op een diepte van ca. 100 m onder maaiveld. Basisgegevens zijn:

gemiddelde jaarneerslag over 1961-1990: 750 mm.a⁻¹ gemiddelde referentie gewasverdamping: 555 mm.a⁻¹ diepte van de hydrologische basis: 100 m

Tabel 5.3 Tritium waarnemingen in LMG-putten Meierei, metingen in 1983

	(f1 = bovenste	filter; $f2 = mi$	iddelste	filter;	f3 = oi	nderste filter)		
LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	m.a ⁻¹	mm.a ⁻¹	reistijd	(a)
94	kaatsheuvel	bos	91	1	0.70	244	23	49
95	nuland	grasland	70	30	1.31	457	9	23
96	lith	grasland	66	5	0.96	334	11	32
97	haaren	bouwland	64	1	0.92	322	9	31
98	venkant	grasland	1	1	**	**	**	**
99	den bosch	bebouwd	57	68	1.43	500	8	26
103	veghel	grasland	16	1	0.33	115	28	79
108	biest	bouwland	57	1	0.77	268	12	42
109	tilburg	bebouwd	50	1	0.94	329	8	31
110	spoordonk	grasland	1	1	**	**	**	**
111	olland	grasland	1	1	**	**	**	**

Tabel 5.4 Interpretatie van ³H concentraties PMG Meierei van Den Bosch, medio 1992, (z= dikte doorstroomde laag; I= grondwateraanvulling; p= porositeit)

	(0		G, I	I	
PMG	landgebruik	f1	f3	f1	f3	I/p	I	f1	f3
nr		z(m)	z(m)	TU	TU	$m.a^{-1}$	mm.a ⁻¹	reistijo	d (a)
1828	bebouwd	12	0	19	**	0.42	147	32	0
1829	bos	8	23	26	4	0.66	231	14	40
1832	bos	10.5	22	20	14	0.88	307	13	31
1826	gras	3	20	14	39	0.56	197	8	35
1827	gras	5.5	22	41	50	0.59	207	17	31
1830	gras	9	23	21	5	0.75	261	13	37
1834	gras	9	22	23	5	0.70	246	14	38
1831	intens. veeh.	8	23	21	<1.5	0.64	222	14	43
1833	intens. veeh.	7	18	30	<1.6	0.54	188	14	40

De aanvulling van het grondwater is wisselend van grootte in het gebied van de Meierei van Den Bosch (Fig.16). Het is opvallend dat de zuidelijke putten, waar de afzettingen van de Nuenen groep het dikst zijn, de laagste waarden vertonen. In het noordelijk deel vindt blijkbaar nauwelijks oppervlakkige afstroming plaats, maar in het zuiden wel. Het vermelden van gemiddelde waarden is daarom niet zinvol.

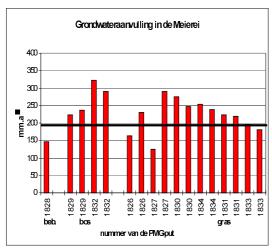


Fig.16 Grondwateraanvulling, PMG-putten in de Meierei

5.4. De Kempen

In de Kempen lagen 150 jaar geleden nog veel woeste zandgronden met een heidevegetatie. Een deel van het land is daarna met bos bedekt en een ander deel van het land is ontgonnen voor de landbouw. Rond Eindhoven vond een sterke industriële ontwikkeling plaats zodat het gebied nu relatief dicht bevolkt is. In het noordelijk deel zijn de afzettingen van de Nuenen Groep prominent aanwezig in de ondiepe bodem. Basisgegevens zijn (Tabel 5.1):

gemiddelde jaarneerslag over 1961-1990: 775 mm.a⁻¹ gemiddelde referentie gewasverdamping: 565 mm.a⁻¹ diepte van de hydrologische basis: 80 m

Tabel 5.5 Tritium waarnemingen in LMG-putten De Kempen, metingen in 1983 (fl = bovenste filter; f2 = middelste filter; f3 = onderste filter)

LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr	F	gebruik	TU	TU	m.a ⁻¹	mm.a ⁻¹	reistijd	
112	son	grasland	54	1	0.89	310	7	57
113	bladel	bouwland	62	53	0.57	201	7	22
114	vessem	bos	41	38	1.18	413	4	26
115	lieshout	grasland	**	**	**	**	**	**
117	helmond	bebouwd	40	1	0.41	143	23	68
118	eindhoven	bebouwd	96	1	0.53	186	16	73
119	aalst	bos	39	1	1.05	368	4	30
120	mierlo	bos	83	27	1.17	409	8	29
123	vlierden	bos	81	1	0.82	288	15	33
124	weebosch	bouwland	72	80	1.16	407	8	25
125	westerh.	bouwland	78	29	1.00	350	13	29
126	leende	bos	88	1	0.90	316	12	35
127	budel	bebouwd	67	18	0.92	323	13	29
128	someren	onbekend.	**	**	**	**	**	**
129	b.schoot	bos	124	1	0.49	172	22	68

Tabel 5.6	Interpretatie van de tritium concentraties PMG in de Kempen, medio 1992
	$(z = dikte\ doorstroomde\ laag;\ I = grondwateraanvulling\ p = porositeit;$

PMG	landgebruik	f1	f3	f1	f3	I/p	I	f1	f3
nr		z(m)	z(m)	TU	TU	m.a ⁻¹	mm.a ⁻¹	rei	stijd (a)
1836	bos	1.5	12	17	2	0.32	112	6	40
1842	bos	2.5	15	16	<1.6	0.45	156	6	43
1845	bos	2	16	13	27	0.59	205	5	31
1846	bos	2.5	**	13	**	0.39	137	8	**
1848	bos	1.5	16	19	11	0.39	136	7	37
1849	bos	4	**	19	**	0.75	261	7	**
1852	bos	13	**	<1.5	**	0.34	120	43	**
1844	bouwland	7	22	34	4	0.62	217	14	39
1835	intens.veeh.	6	18	19	2	0.52	181	13	40
1837	intens.veeh.	3	**	34	**	0.21	74	14	**
1840	intens.veeh.	9	24	43	8	0.66	229	18	39
1841	intens.veeh.	3	13	45	13	0.27	93	17	39
1843	intens.veeh.	7	22	10	<1.6	0.72	252	11	40
1851	intens.veeh.	8	22	190	7	0.49	173	28	39
1853	intens.veeh.	9	23	26	17	0.74	258	14	39
1854	intens.veeh.	8	23	25	8	0.71	248	14	37

De aanvulling van het grondwater is ook in de Kempen wisselend van grootte, vermoedelijk als gevolg van variaties in de oppervlakkige afvoer van de neerslag. Opvallend is verder dat de waarden soms verschillen voor de filters van dezelfde put (Fig.18). Een reden zou kunnen zijn dat de stroming van het grondwater verschilt voor de twee bemonsterde diepten, doordat de diepere lagen water afvoeren afkomstig uit een ander gebied met minder slecht doorlatende lagen in de ondiepe bodem. Gemiddelde waarden zijn:

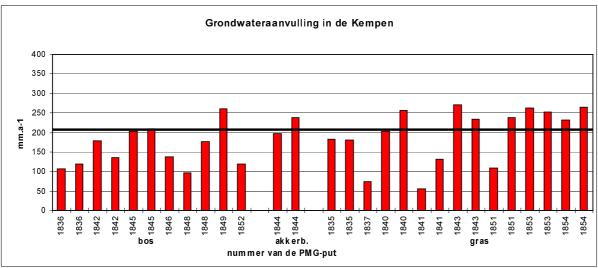


Fig. 17 Grondwateraanvulling, PMG-putten in de Kempen

5.5. De noordelijke Peel

Door de geologische opheffing van de Peelhorst zijn de watervoerende pakketten relatief dun, zodat het doorlaatvermogen niet voldoende is om het overschot aan neerslag af te voeren. De drainage is vanaf de jaren 1930 verbeterd, waardoor het land voor de landbouw kon worden ontgonnen. De grondwateraanvulling zal vrijwel gelijk zijn aan vroeger en dus lager dan het neerslagoverschot, dat relatief gering is in de Peel. Veel boeren beregenen hun land. De hydrologische basis ligt iets dieper in het gebied ten oosten van de Peel (Meinardi, 1994). Gebruikte waarden zijn: gemiddelde jaarneerslag over 1961-1990: 740 mm.a⁻¹; gemiddelde referentie gewasverdamping: 560 mm.a⁻¹; diepte van de hydrologische basis: 50 m

	Tabel 5.7 Tritium	waarnemingen	in LMG-	nutten de Pe	el metinger	in 1983
--	-------------------	--------------	---------	--------------	-------------	---------

LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	$m.a^{-1}$	mm.a ⁻¹	reistij	d (a)
100	macharen	grasland	57	1	0.70	247	12	40
101	schaik	bos	68	39	1.35	471	10	23
104	odiliapeel	bos	62	12	1.08	377	9	31
105	beers	grasland	43	1	1.16	407	8	31
106	landhorst	bouwland	65	33	0.96	335	11	24
107	sambeek	bouwland	66	18	1.08	378	9	31
116	gemert	grasland	47	41	0.98	342	11	29
121	rips	bos	76	54	1.29	453	8	26
122	overloon	bouwland	76	42	1.08	379	8	26

Tabel 5.8 Interpretatie van de tritium concentraties in de Peel (PMG), metingen 1992

I										
PMG	landgebruik	f1	f3	f1	f3	I/p	I	f1	f3	
nr		z(m)	z(m)	TU	TU	m.a ⁻¹	mm.a ⁻¹	reistijd	(a)	
1857	bos	4	23	21	<1.3	0.74	259	7	43	
1850	bouwland	2	18	20	2	0.49	173	6	40	
1858	gras	5	22	31	34	0.59	206	14	39	
1855	intens.veeh.	1.5	13	<1.5	<1.5	**	**	**	**	
1856	intens.veeh.	6	21	<1.5	<1.5	**	**	**	**	
1860	intens.veeh.	11	**	19	**	0.39	136	32	**	
1861	intens.veeh.	3	14	15	21	0.37	131	9	39	
1862	intens.veeh.	13	**	15	**	0.46	160	32	**	
1863	intens.veeh.	9	21	<1.5	<1.3	**	**	**	**	

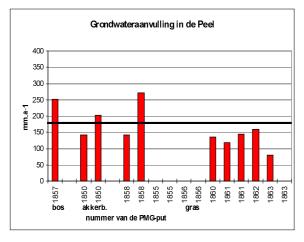


Fig. 18 Grondwateraanvulling, De Peel

De berekende waarden voor de aanvulling van het grondwater zijn in overeenstemming met een oppervlakkige afvoer van het overschot aan neerslag. Bouwland is ook hier vaak tijdelijk maïsland. Uit eerder onderzoek volgen hogere waarden, maar die zijn toegeschreven aan het toepassen van beregening op de onderzochte boerderijen (te Wanroij en Sevenum, Meinardi, 1994). Gemiddelde waarden zijn : $P-E_p=180 \text{mm.a}^{-1}$; $I_{gem.}=150 \text{ mm.a}^{-1}$

$$P-E_p = 180 \text{mm.a}^{-1}$$
; $I_{gem} = 150 \text{ mm.a}^{-1}$
dus: $P-E_p - I_{gem} = 30 \text{ mm.a}^{-1}$

5.6. De resultaten van het PMG Noord-Brabant

De gegevens van 84 filters uit 56 putten van het Provinciale Meetnet Grondwaterkwaliteit in Noord-Brabant zijn bewerkt. De concentraties in 11 filters waren te laag voor interpretatie. De gemiddelde aanvulling van het grondwater is ongeveer 50 mm.a⁻¹ hoger dan het potentiële overschot aan neerslag indien geen oppervlakkige afvoer van de neerslag optreedt. Dit komt overeen met de voorspellingen (Werkgroep HELP, 1987). Er blijken grote gebieden te zijn waar oppervlakkige afvoer van de neerslag zal voorkomen. De aanwezigheid van storende lagen in de ondiepe ondergrond kan een relatief kleine aanvulling van het grondwater tot gevolg hebben en dus een vergroting van de reistijden van het grondwater in de bodem. In de Peel zouden de afwijkingen kunnen optreden door een andere oorzaak. Daar hangt het optreden van oppervlakkige afvoer samen met het relatief geringe doorlaatvermogen van de ondergrond. Met dat kenmerk was in (Meinardi, 1994) geen rekening gehouden.

5.7. Noord- en Midden-Limburg; zuidelijke Peel

De opbouw van de ondergrond van Noord- een Midden-Limburg is in detail bezien relatief complex, maar voor een eerste beschouwing kan volstaan worden met een eenvoudige schematisering. Gebruikte waarden voor de interpretatie van de LMG-gegevens zijn:

gemiddelde jaarneerslag over 1961-1990: 750 mm.a⁻¹ gemiddelde referentie gewasverdamping: 550 mm.a⁻¹ diepte van de hydrologische basis: 50 m

Tabel 5.9 Tritium waarnemingen in LMG-putten Noord-Limburg,, metingen in 1984 (fl = bovenste filter; f2 = middelste filter; f3 = onderste filter)

LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr	•	gebruik	TU	TU	m.a ⁻¹	mm.a ⁻¹	reistijd	(a)
245	milsbeek	grasland	45	48	1.08	379	8	24
246	heijen	bouwland	38	51(f2)	0.98	344	8	23 (f2)
247	well	bouwland	67	36	1.06	370	9	30
248	castenray	bos	75	22	0.96	338	9	30
250	grubbenvorst	bouwland	70	39	0.89	313	10	30
251	arcen	grasland	58	1	0.63	221	9	49
252	weert	bebouwd	1	41	**	**	**	**
253	nederweert	bouwland	52	42	1.01	354	7	27
254	echel	grasland	1	1	**	**	**	**
255	reuver	grasland	46	1	0.94	328	8	29
256	baexem	bouwland	38	1	1.03	360	5	31
257	roermond	onbekend	41	1	1.22	429	8	31
258	herkenbosch	bos	60	15	1.08	380	9	31
259	peij	bouwland	33	7	1.03	360	5	31
260	nieuwstad	bos	20	6	**	**	**	**
261	roosteren	onbekend	110	1	0.50	177	17	62
271	sevenum	bouwland	81	9	0.76	267	13	31

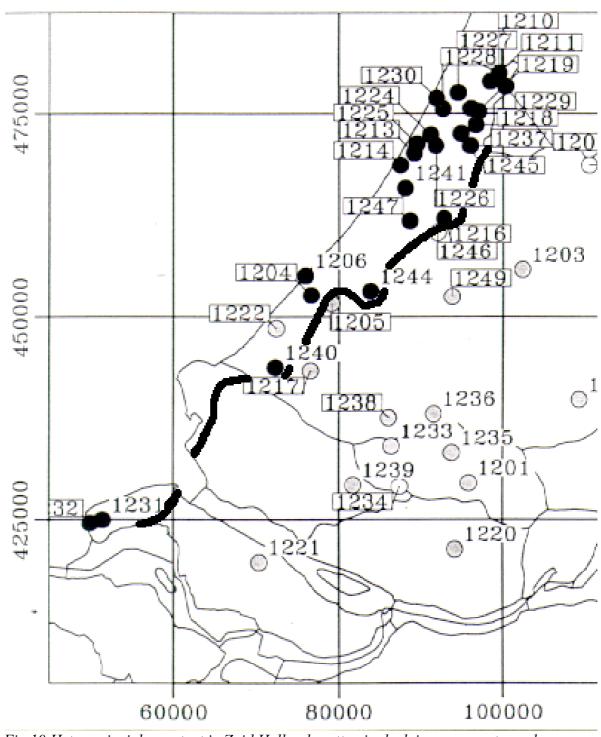


Fig. 19 Het provinciale meetnet in Zuid Holland; putten in de duinen en geestgronden

6. Duinen, geestgronden en Waddeneilanden

6.1. De PMG-putten in de provincie Zuid-Holland

In Zuid-Holland zijn zandgronden aanwezig in het meest westelijke deel van de provincie. Het betreft niet alleen de duinen langs de kust maar ook de geestgronden in een zone ernaast (Fig.19). De duinen zijn meestal begroeid met een natuurlijke vegetatie voor zover ze niet bebouwd zijn. De geestgronden worden overwegend voor de bollenteelt en de grove tuinbouw gebruikt (beide aangeduid met "tuin" in Tabel 6.1). De iets minder goede gronden zijn als grasland in gebruik. Misschien is daar de ontwatering ook minder doordat in de ondiepe bodem soms slecht doorlatende lagen van Holocene oorsprong aanwezig zijn. Neerslag, verdamping en de diepte van de hydrologische basis kunnen verschillende waarden aannemen. Voor de interpretatie (Tabel 6.1) zijn de volgende waarden gebruikt: gemiddelde jaarneerslag over 1961-1990: 825 mm.a⁻¹

gemiddelde jaarneerslag over 1961-1990: 825 mm.a⁻¹ gemiddelde referentie gewasverdamping: 600 mm.a⁻¹ diepte van de hydrologische basis: 100 m

Tabel 6.1	Interpreta	tie van	tritium	concen	traties i	n Zuid-	Holland (P	PMG), najaar .	1990
PMG	landgebruik	f1	f3	f1	f3	I/p	I	f1	f3
nr		z(m)	z(m)	TU	TU	$m.a^{-1}$	mm.a ⁻¹	reistij	d (a)
1209	bebouwd	**	24	3	**	0.74	258	**	37
1224	bebouwd	9	24	43.9	< 2.4	0.63	222	16	41
1237	bebouwd	**	24	7.8	**	0.75	261	**	37
1244	bebouwd	**	24	6.6	**	0.74	258	**	37
1206	bos	**	24	58.2	**	0.85	299	**	32
1219	bos	**	24	12.8	**	0.75	261	**	37
1230	bos	**	24	16.7	**	0.75	261	**	37
1232	bos	9	24	21.2	100	0.93	327	11	29
1232	bos	**	24	100	**	0.96	336	**	29
1247	gras	7	24	90.3	4.5	0.50	176	25	38
1231	gras	8	24	10.2	1.5	0.47	165	30	41
1210	tuin	**	24	2.2	**	0.73	254	**	38
1211	tuin	8	24	43.9	15.8	0.70	245	13	37
1218	tuin	**	24	25.3	**	0.83	289	**	33
1225	tuin	**	24	11.9	**	0.75	261	**	37
1227	tuin	**	24	<1.9	**	0.67	235	**	41
1228	tuin	8	23	16	< 2.4	0.74	260	11	37
1229	tuin	**	24	3.8	**	0.74	258	**	37
1245	tuin	**	23	4	**	0.70	245	**	37

In het algemeen komen de geschatte waarden voor de grondwateraanvulling (Fig.20) redelijk goed overeen met het verschil tussen neerslag en de KNMI referentie-gewasverdamping. Vaak zijn de waarden voor de aanvulling iets groter. Dit kan komen doordat een reductie van de potentiële evapotranspiratie optreedt als gevolg van droogte, maar voor de met "tuin" aangeduide gronden zou de werkelijke verdamping ook kleiner kunnen zijn dan de evapotranspiratie van grasland. De verdamping van bollenvelden en van gronden die voor grove tuinbouw worden gebruikt, is moeilijk te schatten. Hetzelfde geldt uiteraard ook voor gebieden die bebouwd zijn (maar wel voorzien van tuinen en parken). Verder is het zo dat de

waarden voor het ondiepe en het diepe filter voor twee van de in grasland geplaatste putten relatief aanzienlijk van elkaar verschillen. De reden zou een in de ondiepe bodem aanwezige slecht doorlatende laag kunnen zijn, waardoor de stroming van het grondwater verschilt voor de verschillende diepten van de filters. Om dezelfde reden zou ook oppervlakkige afstroming kunnen voorkomen bij grasland waar gemiddeld een positief verschil tussen het potentiële overschot aan neerslag en de grondwateraanvulling is bepaald.

Gemiddelde waarden voor het potentiële neerslagoverschot en de aanvulling zijn:

 $P-E_{p} = 225 \text{ mm.a}^{-1}$ $I_{gem.} = 244 \text{ mm.a}^{-1}$ bebouwd: $P-E_{\rm p} - I_{\rm gem.} = -21 \text{ mm.a}^{-1}$ I_{gem} . = 295 mm.a⁻¹ $P-E_p = 225 \text{ mm.a}^{-1}$ $P-E_{\rm p} - I_{\rm gem.} = -60 \text{ mm.a}^{-1}$ bos en natuur: $P-E_p = 225 \text{ mm.a}^{-1}$ I_{gem} . = 183 mm.a⁻¹ $P-E_{p} - I_{gem} = +42 \text{ mm.a}^{-1}$ grasland: I_{gem} . = 255 mm.a⁻¹ $P-E_p - I_{gem} = -90 \text{ mm.a}^{-1}$ $P-E_{p} = 345 \text{ mm.a}^{-1}$ tuin en bollenland:

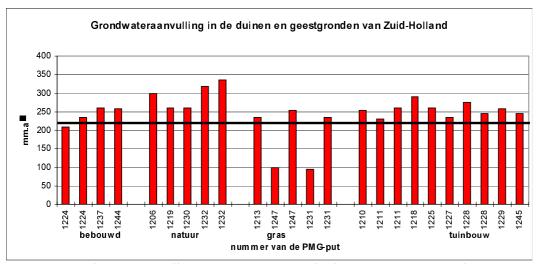


Fig. 20 Grondwateraanvulling, PMG-putten in de duinen en geestgronden van Zuid-Holland

De waarden voor de aanvulling van het grondwater die bepaald zijn met de gegevens uit de 23 filters in de 19 putten van het PMG in Zuid-Holland komen redelijk goed overeen met de waarden die eerder bepaald zijn met behulp van het LMG (Meinardi, 1994). De waarden die zijn bepaald voor de aanvulling van het grondwater zijn vaak enigszins hoger dan het potentiële overschot aan neerslag. Dat kan veroorzaakt zijn door vochttekorten tijdens droge perioden waardoor een reductie van de potentiële verdamping optreedt. Het is echter niet uitgesloten dat ondiepe Holocene kleilagen in sommige gevallen zullen leiden tot een oppervlakkige afvoer van neerslag en daarmee tot een vermindering van de aanvulling van het grondwater. Aangezien het echter maar enkele gevallen betreft, is er geen reden om de eerdere beschouwingen over de aanvulling van het grondwater in de duinen en geestgronden te herzien. De overeenkomst in resultaten van de interpretaties van gegevens van het LMG en van het PMG, niet alleen voor Zuid-Holland, maar ook voor de overige provincies, geeft vertrouwen in de gevolgde methode.

6.2. LMG gegevens van de Hollandse duinen

De Nederlandse duinen en de aanliggende geestgronden hebben een zandige bodem. Het gevolg is dat tritium concentraties afkomstig van monsters uit waarnemingsputten in die gebieden een interpretatie van reistijden en van de grondwateraanvulling mogelijk maken. De duinen zijn meest begroeid met een natuurlijke begroeiing, maar op de geestgronden worden intensieve teelten (bollen) uitgeoefend. Neerslag, verdamping en de diepte van de hydrologische basis kunnen verschillende waarden aannemen, voor de interpretatie (Tabel 6.2) zijn de volgende waarden gebruikt:

gemiddelde jaarneerslag over 1961-1990: 825 mm.a⁻¹ gemiddelde referentie gewasverdamping: 600 mm.a⁻¹ diepte van de hydrologische basis: 80 m

Tabel 6.2 Tritium waarnemingen in LMG-putten Hollandse duinen, metingen in 1983

	(f1 = bovenste f	filter; $f2 = m$	f2= middelste filter;		f3= onderste filter)			
LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	m.a ⁻¹	mm.a ⁻¹	reistij	id (a)
300	ijmuiden	bebouwd	39	1	0.39	136	23	58
47	haasveld	duin	56	63	1.16	405	10	26
48	hillegom	tuinen	58	1	0.57	201	12	49
50	katwijk	tuinen	47	1	0.80	280	11	38
303	noordwijk	bouwland	58	82	1.19	418	8	25
59	wassenaar	duin	31	129	1.25	438	8	25
60	den haag	bebouwd	98	1	0.45	157	22	68
77	rockanje	bos/natuur	7	1	**	**	**	**
84	monster	duin	74	1	0.99	346	12	32
85	hoek van holl.	duin	26	1	0.27	95	29	113

6.3. De Zeeuwse duinen

De Zeeuwse duinen lijken op de Hollandse duinen, maar deze duinen vormen geen aaneengesloten gebied. De geestgronden naast de duinen zijn minder uitgestrekt dan in de provincies Zuid- en Noord-Holland. Neerslag, verdamping en de diepte van de hydrologische basis kunnen verschillende waarden aannemen, voor de interpretatie (Tabel 6.3) zijn de volgende gemiddelde waarden gebruikt:

gemiddelde jaarneerslag over 1961-1990: 825 mm.a⁻¹ gemiddelde referentie gewasverdamping: 600 mm.a⁻¹ diepte van de hydrologische basis: 50 m

Tabel 6.3 Tritium waarnemingen in LMG-putten Zeeuwse duinen, metingen in 1983

	(fI = bovenste fi	ılter; f2= mi	iddelste j	ilter;	f3 = on	derste filter)		
LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	m.a-1	mm.a-1	reistijd	l (a)
86	ouddorp	bouwland	49	1	0.69	242	12	45
304	haamstede	grasland	76	1	0.49	172	16	61
309	vrouwenpolder	duin	75	1	0.57	198	16	53
310	biggekerke	duin	74		0.31	110	16	

6.4. LMG gegevens van de Waddeneilanden

De Waddeneilanden vormen een onderdeel van de duinenrij langs de Nederlandse kust. De duinen zelf zijn vaak begroeid met een min of meer natuurlijke duinvegetatie, maar in de aan de Waddenzee gelegen polders wordt landbouw bedreven op een aantal van de eilanden. Neerslag, verdamping en de diepte van de hydrologische basis kunnen verschillende waarden aannemen, voor de interpretatie (Tabel 6.1) zijn de volgende waarden gebruikt:

gemiddelde jaarneerslag over 1961-1990: 825 mm.a⁻¹ gemiddelde referentie gewasverdamping: 600 mm.a⁻¹

diepte van de hydrologische basis: 60 m

Tabel 6.4 Tritium waarnemingen in LMG-putten Waddeneilanden, metingen in 1983

	(f1 = bovenste filter;	f2= middelste filter;		f3 = a	onderste j	filter)		
LMG	plaats	land	f1	f3	I/p	I	f1	f3
nr		gebruik	TU	TU	m.a ⁻¹	mm.a	¹ reistija	d (a)
184	west-terschelling	bos/ natuur	33	6	1.17	409	7	30
185	schiermonnikoog	duin	57	83	1.27	444	8	25
273	de koog (texel)	onduidelijk	9	1	**	**	**	**
274	de waal (texel)	bouwland	1	1	**	**	**	**

7. Overzicht van de resultaten voor vier provincies

Gegevens over de concentraties aan tritium (³H) in monsters uit de provinciale meetnetten grondwaterkwaliteit (PMG) zijn gebruikt voor een bepaling van de reistijden van het water in de bodem en de aanvulling van het grondwater. De beschikbare gegevens waren uitsluitend afkomstig uit gebieden met een zandige bodem. Ook voor de interpretatie van de gegevens uit de PMG blijkt de eerder ontwikkelde methode (Meinardi, 1994) goede resultaten op te leveren. De resultaten voor PMG komen niet steeds overeen met die voor LMG (bijvoorbeeld in Drenthe), maar dat ligt waarschijnlijk aan een verschillende hydrologische situatie. De gemeten ³H concentraties blijken goed bruikbaar te zijn om reistijden in de bodem en de aanvulling van het grondwater in de zandgebieden van Nederland te bepalen.

De interpretatie van de concentraties aan ³H in de PMG-putten leveren per monster het jaar van infiltratie naar het grondwater op en dus ook een waarde voor de reistijd in de bodem. In totaal zijn concentraties aan tritium gemeten in monsters uit 332 filters van 187 PMG-putten in het zandgebied van Nederland. Voor 45 monsters lag de concentratie beneden de detectielimiet. De gemiddelde waarden van de hiermee bepaalde reistijden van het grondwater in de bodem zijn gegeven in Tabel 7.1.

Tabel 7.1 Gemiddelde reistijden (jaar) in de monsters uit putfilters van de vier PMG

para.	gebied	filter1	filter2	filter3 filter 4
3.2.	Noord-Drenthe	14	22	38
3.3.	Zuidwest-Drenthe	16	27	40
3.4.	Zuidoost Drenthe	14	**	39
4.2.	Achterhoek	11	21	34
4.3.	Het Oost-Gelders Plateau	11	**	**
4.4.	De IJsselvallei	11	30	33
4.5.	De Veluwe	12	19	34
4.6.	De Gelderse Vallei	11	26	42
4.7.	Omgeving van Nijmegen	14	31	**
5.2.	Noordwest-Brabant	11	26	39 42
5.3.	De Meierei van Den Bosch	11	17	37 37
5.4.	De Kempen	11	14	38 39
5.5.	De Peel	9	32	40 **
6.1.	Duinen en geestgronden, Z-H	18	**	** 37

Filter 4 in Tabel 7.1 ligt meestal slechts enkele meters dieper dan filter 3. De gemiddelde reistijden voor dezelfde diepten blijken relatief weinig van elkaar te verschillen in de diverse zandgebieden van Nederland. De grootste verschillen treden op bij het diepste filter zoals ook mocht worden verwacht.

De gemeten ³H concentraties leveren in 287 van de 322 gevallen een waarde op voor reistijden in de bodem van het in de onderzochte PMG bemonsterde grondwater.

De bepaling van de grootte van de grondwateraanvulling is uitgevoerd als een controle op de uitkomsten van de bepaling van de reistijden. Onafhankelijk van elkaar bepaalde waarden van grondwateraanvulling voor verschillende filters in één put moeten ongeveer gelijk zijn. De waarden van de aanvulling zijn op zichzelf ook van belang. Het grondwater zal in de relatief naaste omgeving van de bemonsterde put (binnen een straal van enkele kilometers) zijn gevoed als een waarde kan worden bepaald voor de aanvulling. In die omgeving moeten de bronnen van eventuele vervuiling van het grondwater liggen. De grote meerderheid van de waarnemingen in de putten van de diverse PMG geeft dus aan dat de aanvulling van het grondwater lokaal plaatsvindt. Slechts in 45 van de 332 monsters uit de onderzochte putten was geen bepaling mogelijk.

Het grondwater van de PMG-putten in de zandgebieden wordt overwegend in de naaste omgeving (binnen enkele kilometers van de put) gevoed door het neerslagoverschot.

Uit de PMG blijkt dat de gemiddelde aanvulling van het grondwater vaak enkele tientallen mm.a⁻¹ hoger is dan het potentiële neerslagoverschot (volgens KNMI-gegevens) in gevallen dat geen oppervlakkige afvoer plaatsvindt. De verschillen kunnen worden voorspeld op basis van de waarden in de HELP Tabellen (Werkgroep HELP, 1987). De waarnemingen geven aan dat de grondwateraanvulling onder gebieden met een verschillend landgebruik niet duidelijk van elkaar verschilt. De grondwateraanvulling voor verschillende gebieden wijkt vaak weinig af van die van het grondwater onder grasland. Een reden is vermoedelijk dat de vegetatie veelal overwegend grasachtig zal zijn voor bos- en natuurgebieden en bebouwd gebied, inclusief tuinen en parken. Bouwland bestaat in veel zandgebieden van Nederland vaak uit tijdelijk maïsland dat in de overige (langere) tijd als grasland wordt gebruikt. Het grondwater in de zandgebieden wordt overwegend vanuit grasland of vanuit gebieden

Het grondwater in de zandgebieden wordt overwegend vanuit grasland of vanuit gebieden met een vergelijkbare evapotranspiratie aangevuld.

In veel gebieden blijkt oppervlakkige afvoer van het neerslagoverschot voor te komen met als gevolg dat de aanvulling van het grondwater kleiner is dan het neerslagoverschot. De PMG gegevens geven ook aan dat dit verschijnsel vermoedelijk samenhangt met het voorkomen van relatief slecht doorlatende lagen in de ondiepe bodem. Voor een groot deel is het voorkomen van dergelijke lagen af te leiden uit de Bodemkaart van Nederland, zoals eerder is gedaan in (Meinardi, 1994). Uit de analyse van de gegevens van de PMG blijkt echter dat aanvullend nog enkele factoren een rol kunnen spelen zoals het geringe doorlaatvermogen van de ondergrond in de Peel en in Oost-Gelderland en het voorkomen van Holocene kleilagen in het kustgebied. Het betreft echter relatief kleine gebieden zodat het eerder gegeven algemene beeld in grote lijnen geldig blijft.

Het ruimtelijk beeld geschetst in (Meinardi, 1994) voor reistijden en aanvulling van het grondwater in de zandgebieden geldt ook voor de PMG-putten.

GEBRUIKTE LITERATUUR

- Meinardi C.R. (1994), Groundwater recharge and travel times in the sandy regions of the Netherlands, RIVM rapport nr.715501005
- Mook W.G. (1989), Principles of isotope hydrology, Introductory course on Isotope Hydrology, Dep. of Hydrogeology and Geographical Hydrology, VU Amsterdam
- Werkgroep HELP (1987), De invloed van de waterhuishouding op de landbouwkundige productie, Rapport van de Werkgroep HELP-tabel, Mededelingen Landinrichtingsdienst no 176