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1 Introduction 
Projections of global population distribution and urbanization become increasingly important 
in scenario-based assessments of future climate related exposure and vulnerability. According 
to the UN World Population Prospects, the global population becomes increasingly urban, which 
triggers the worldwide expansion of urban areas. In recent years, global datasets of gridded 
population distribution have been developed. These are often characterised by having a 
relatively coarse spatial resolution of 5-10 km. The methods used simply scaled or extrapolated 
existing spatial patterns and population densities. The 2UP model is developed to simulate 
future urban growth and population distribution on a global scale. It includes specific allocation 
procedures to explicitly account for urban population density change and urban expansion. 
Besides the simulation of future change in population and urban area, the model is also used 
to disaggregate national level GDP scenarios. Both the population and GDP scenarios are 
provided by the Shared Socioeconomic Pathways. Figure 1 shows the conceptual model of 2UP. 
The basics of the model are similar to other spatial models like the Land Use Scanner (Loonen 
and Koomen, 2009).  
 
The resulting spatially explicit projections of population growth and urban expansion have a 
relatively high resolution of 1 kilometre near the equator. To the best of our knowledge, it 
provides the most detailed global urban growth scenarios that are currently available. The 
maps illustrate the spectrum of possible (urban) population growth scenarios up to 2050. 
Overall, they can be applied for the assessment of global flood risks, and they are potentially 
useful to facilitate ongoing research on global change. As part of the project Vulnerability of 
global cities the outcomes will be applied in the Aqueduct Global Flood Analyzer 
(http://floods.wri.org). The World Resources Institute (WRI), together with Deltares, VU 
University Amsterdam, Utrecht University, and PBL Netherlands Environmental Assessment 
Agency, is working on the development of this online instrument that can measure flood risks 
at a global level. It is designed for the detailed assessment of global flood risk and will allow 
users to prioritize where in the world attention to flood risk and flood risk adaptation is needed. 
Also, it provides country estimates of the costs and benefits of disaster risk reduction 
strategies.    
 
This background report is written with the intention to qualitatively describe the 2UP model, 
and is aimed at giving insight into the design of the model and how it is implemented. It 
includes descriptions of input and the interactions between model components in relation to 
the calculation procedures used in the model. Also, the assumptions and choices that were 
made during the development of the model are described. By way of illustration, a few 
examples of the model output are presented in the last chapter.   

http://floods.wri.org/
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Figure 1. Conceptual model 2UP: Input, processing and outcomes 
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2 Methodology 
2.1 Model input and preparation 

2.1.1 Projected population, urbanization and GDP 
 
The Shared Socioeconomic Pathways (SSP) have been developed by the research community 
to facilitate integrated assessments of climate impacts, vulnerabilities, adaptation and 
mitigation. They provide possible pathways of society and related societal systems for the 21st 
century. The SSP projections, five in total, are quantified and documented in the SSP database, 
and include scenarios for population, urbanization and GDP on global and national scales. The 
national population data are based on the projection of the International Institute for Applied 
Systems Analysis – Wittgenstein Centre for Demography and Global Human Capital (IIASA-
WIC). The projection data on urbanization are developed by the National Center of Atmospheric 
Research (Jiang and O’Neill, 2017). The complete database is made publicly available by IIASA 
(IIASA, 2013). Additional information and references to supplementary material can be found 
at https://tntcat.iiasa.ac.at/SspDb. Countries are considered and denoted by an ISO 3166-1 
alpha3 three-letter country code. 

The SSP scenarios provide a suitable starting point for the development of spatial distribution 
projections of population and exposure of assets to natural hazards. The database contains 
data for 194 countries from 2010 to 2100. For this project specifically, the population 
projections were used to extract total and urban population for the period 2010-2050 in 10-
year intervals. Also, GDP per capita was extracted for the GDP projections. For this study, only 
SSP1, 2 and 3 were considered relevant. SSP2 represents a ‘business as usual’ development 
path. SSP1 and 3 were chosen because their narratives tell an opposing development path 
relative to SSP2 regarding population growth, urbanization and economic development. 
Detailed descriptions of the SSP scenarios can be found in e.g. Jiang and O’Neill (2017) and 
O’Neill et al. (2017). 

For 43 countries (see table 1) in the SSP database, the population and GDP projections are 
available but not the urbanization projections. In order to still be able to simulate urban growth 
for these countries, additional data is used to fill this gap. For these countries the proportion 
of the total population that is considered urban in 2010, the urban share, is derived from the 
GRUMP urban extent grid (Balk et al. 2006; CIESIN et al. 2011) in combination with LandScan 
gridded population count (Bright et al. 2013). The urban share is determined by superimposing 
the urban extent on the gridded population map and extract the proportion urban population 
in each country. For the future time steps (2020-2050) the urban share is kept constant for 
these cases and assumed to be equal to the base year. 

2.1.2 Spatial base grid 
 
A spatial base grid with the desired spatial projection and resolution is essential for developing 
distributed population and land use maps. Consistent with the available flood hazard layers in 
the Aqueduct Flood Risk Analyzer, the base grid is set up with a spatial resolution of 30 arc 
seconds (approximately 1 km near the earth’s equator) and spatially referenced to WGS84. 
Its geographical extent ranges from -180˚E to 180˚W and -90˚S and 90˚N.  

  

https://tntcat.iiasa.ac.at/SspDb
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Table 1: Countries (ISO3) with constant urban share 

 
In 2UP the based grid is linked to a country grid, primarily derived from the Global 
Administrative Areas dataset (GADM, 2012) which includes the common country identification 
to the ISO 3166-1 standard. This ensures that each country can be identified with means of a 
country ID. A few country boundaries were manually modified in ArcMap to match the UN 
country definitions as used by IIASA in the SSP database; GIS-technically Kosovo is included 
under Serbia; South and North Sudan are joined into one country. For 57 countries, often 
small countries, subparts of a country or islands, there is no data available in the SSP database 
and their values are set to NODATA in the modelling process (see table 2).  

The spatial base grid originally includes only the cells that consist of 100% land or mainly land 
when gridded from vector. However, at 30’’ resolution many coastal cells only partly contain 
land and are thus not included in the original base grid. This grid is therefore extended with 
those cells that include both part land (however small it is) and water. An additional data layer 
with land percentage per grid cell is used for this purpose (provided by Deltares: https://aqua-
monitor.appspot.com/). The resulting grid includes all cells that are located completely inside 
or at the boundary of the original country grid. 100% water cells that represent oceans, seas 
and lakes are left out of the base grid.  

For calculating densities (e.g. population density), the model transforms the spatial base grid 
in an area grid. The area (km2) is corrected for latitude, as the actual area of the gridcells 
decreases with increasing latitude north and south of the equator. The area is also corrected 
for the available land in a grid cell, based on the land percentage per grid cell. Consequently, 
area represents the area land per grid cell. The model takes this area unit into account in the 
allocation process of urban area and population. This step prevents the population counts from 
becoming too high and unrealistic in grid cells where the land percentage is smaller than 100 
percent. 

  

ISO3 Name ISO3 Name ISO3 Name 

ABW Aruba GUF French Guiana NCL New Caledonia 

BHR Bahrain GUM Guam PRI Puerto Rico 

BHS Bahamas GUY Guyana PYF French Polynesia 

BLZ Belize HKG Hong Kong REU Reunion 

BRB Barbados ISL Iceland SGP Singapore 

BRN Brunei KWT Kuwait SLB Solomon Islands 

BTN Bhutan LCA Santa Lucia STP Sao Tome and Principe 

COM Comoros LUX Luxembourg SUR Suriname 

CPV Cape Verde MAC Macao TON Tonga 

DJI Djibouti MDV Maldives TWN Taiwan 

FJI Fiji MLT Malta VCT Saint Vincent and the 
Grenadines 

FSM Micronesia MNE Montenegro VIR Virgin Islands, U.S. 

GLP Guadeloupe MTQ Martinique VUT Vanuatu 

GNQ Equatorial Guinea MYT Mayotte WSM Samoa 

GRD Grenada     

https://aqua-monitor.appspot.com/
https://aqua-monitor.appspot.com/
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Table 2: Countries (ISO3) not modelled within 2UP 

 

2.1.3 Baseline gridded population and urban area 
 
To start the simulation of future urban development from 2010 onwards, first an initial set of 
global baseline maps of population distribution and urban land use is required. Over the years 
such datasets have increasingly become available. However, at the time of development none 
of them appeared to be suitable for this projects’ purpose. Existing maps of global population 
distribution either lacked the spatial specification for the urban and rural division, or did not 
meet the requirement that the population input data used needs to be consistent with the 
reported numbers in the SSP database. Therefore, several freely available data sources are 
combined to model the baseline population distribution and the urban extent.  

During the process of model development and usage, three different methods to create the 
baseline maps evolved with progressive insight. All three methods are implemented and can 
be applied when using the model. The methods are briefly described below. Method 2 and 3 
make use of an additional data layer containing global urban contours. For the purpose of 
understanding, its development and use are described first.  

Development of urban contours 
The urban population shares in the SSP database are adopted from statistics reported by each 
country individually. Thereby, there is no consistent international definition of “urban” as each 
country has its own classification to identify urban population based on criteria that include a 
combination of population size and density, economic activity and physical characteristics. For 
example, Belgium defines urban as “All the communes which are not part of the list of rural 

ISO3 Name ISO3 Name ISO3 Name 

ALA Åland FLK Falkland Islands PCN Pitcairn Islands 

ASM American Samoa FRO Faroe Islands SHN Saint Helena 

AND Andorra ATF French Southern 
Territories 

KNA Saint Kitts and Nevis 

AIA Anguilla GIB Gibraltar SPM Saint Pierre and Miquelon 

ATA Antarctica GRL Greenland BLM Saint-Barthélemy 

ATG Antigua and Barbuda GGY Guernsey MAF Saint-Martin 

BMU Bermuda HMD Heard Island and 
McDonald Islands 

SMR San Marino 

BES Bonaire, Saint 
Eustatius and Saba 

IMN Isle of Man SYC Seychelles 

BVT Bouvet Island JEY Jersey SMX Sint Maarten 

IOT British Indian Ocean 
Territory 

KIR Kiribati SGS South Georgia and the South 
Sandwich Islands 

VGB British Virgin Islands LIE Liechtenstein SP- Spratly islands 

CA- Caspian Sea MHL Marshall Islands SJM Svalbard and Jan Mayen 

CYM Cayman Islands MCO Monaco TKL Tokelau 

CXR Christmas Island MSR Montserrat TCA Turks and Caicos Islands 

CL- Clipperton Island NRU Nauru TUV Tuvalu 

CCK Cocos Islands NIU Niue UMI United States Minor Outlying 
Islands 

COK Cook Islands NFK Norfolk Island VAT Vatican City 

CUW Curaçao MNP Northern Mariana 
Islands 

WLF Wallis and Futuna 

DMA Dominica PLW Palau ESH Western Sahara 
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communes are considered as urban communes. There are 33 communes which are considered 
rural…”. The result is that Belgium’s urban population share is 91% and a large part of its 
territory could be classified as urban land use in the baseline map. The consequence of 
adhering to the SSP urban shares, the inherent variations in definition of urban population and 
area are reflected in the baseline urban land use map, which in turn impairs the global 
comparability of the distribution of urban land use. This hinders the aim of the Aqueduct Flood 
Risk Analyzer to allow evaluation and comparison of flood risk across countries. 

To deal with this challenge and to be able to model urbanization in a consistent manner and 
provide an operational definition of “urban”, an additional data source is included in the 
development of the baseline maps. In October 2016 the Global Human Settlement layer 
(GHSL), developed by the Joint Research Centre (JRC) became available 
(http://ghsl.jrc.ec.europa.eu/). The GHSL data collection provides accurate spatially detailed 
and consistent urban land use and population maps and proofed to be particularly useful in 
modelling the urban extent for the baseline maps from which the future projections can be 
simulated.    

The GHSL is a world-complete data collection that was developed using open satellite data 
records. In this framework, historical records of Landsat Imagery are organized in four 
collections (1975, 1990, 2000, and 2014) at 15m, 30m, and 60m spatial resolution, and 
processed with various sensor characteristics. The satellite imagery is modelled into built up 
areas (Pesaresi et al. 2015). This layer represents the proportion of built up area within the 
total size of the grid cell (continues value), and is freely available at 38m, 250m and 1km 
spatial resolution.  

The GHS BUILT-UP map at 38m spatial resolution is used for further processing, with the aim 
to develop a globally consistent urban land use map. For this, the original built-up presence 
map is transformed into a discrete urban/non-urban land use map. This reclassification step 
was done by applying a cap at 50% built-up presence. In words, the grid cells containing 50% 
or more built-up area are classified as urban land use. This break value is based on visual 
comparison and correspondence with other high resolution satellite imagery of built up area. 
Next, the map (Spherical Mercator) is resampled to 30 arcseconds (WGS84) to match with the 
spatial resolution of the other input maps within the GeoDMS-framework-software.   

By including the global urban land use map, an independent and more accurate allocation of 
urban and rural land use is made possible. By using satellite imagery the result is consistent 
across countries, and independent of the prescribed definition of urban by countries, allowing 
for global comparison. 

Method 1 (M1) 
The 2010 urban population map is created by distributing the country-specific urban share of 
the SSP total population 2010 proportionally to the ORNL LandScan 2010 population count 
map (Bright et al. 2011), starting at the highest population count, until the urban total is 
reached. The resulting extent of urban population is classified as urban land use and the 
outcome represents the baseline urban land use map. These steps are repeated for the 
remaining population, representing rural population, and for the surrounding rural (non-urban) 
land use. Both maps sum up to the total population count. 

Method 2 (M2) 
The country-specific urban share of the SSP total population 2010 is distributed within the 
contours of the urban land use map, proportionally to the LandScan 2010 population map. This 
results in a baseline urban population map. These steps are repeated for the remaining 
population, representing rural population, and for the surrounding rural (non-urban) land use. 
Both maps sum up to the total population count. 

http://ghsl.jrc.ec.europa.eu/
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Method 3 (M3) 
This method makes use of the urban land use map to determine the urban/rural population 
split. Only the SSP total population is conserved. First, the total population count map is 
created by distributing the country-specific SSP total population 2010 proportionally to the 
LandScan 2010 map. The country totals are consistent with the SSP data.  

To create the baseline urban population map, the urban land use map is superimposed on the 
total population count map to make the division between urban area/population and rural 
area/population. Consequently, the urban population numbers in the SSP database are not 
used directly. Instead, the relative growth derived from the urban shares in the SSP database 
is used to simulate future development of the urban population. This means only the SSP 
country totals are conserved in the baseline, but not the imposed urban/rural population 
division. Aggregated urban population in the future gridded projections could therefore deviate 
from the absolute reported numbers in the SSP database. 

The advantage of Method 1 and 2 is that by adhering to the urban and rural population division 
reported by the SSP database, both for the baseline and future projections, aggregated totals 
by country remain comparable to other studies that make use of the same population 
projections. Method 3, on the other hand, has the advantage that the global consistency of 
urban land use allows the comparison between countries. For this reason, the Aqueduct Flood 
Risk Analyzer has implemented the model outcomes based on method 3. 

2.1.4 Projected urban density change 
 
In order to simulate future urban expansion in a spatially explicit manner, the model requires 
data on the projected spatial growth of urban areas. The SSP database does not contain data 
on future urban growth or a similar indicator like urban density. Therefore, an additional 
database was found to fill this gap. The History Database of the Global Environment (HYDE 
3.2) contains estimates of mean urban population density per country from 10000 BC to 2100 
AD (Klein Goldewijk et al. 2010, 2017; Klein Goldewijk, 2017). It includes data for all SSP 
scenarios. The urban population density estimates can be used to derive scenario specific 
national claims for urban area for the period 2010-2100.  

The country-specific urban population densities are not used directly in the model, because 
the numbers do not exactly match with the baseline urban population map. For this reason, 
the densities are transformed and used as an index so that the course of urban population 
density over time follows the original data in HYDE. To develop the indices for each SSP 
scenario and country, the time series with absolute numbers of mean urban population density 
are  converted into an index series with base 2010 == 1. To derive the urban area claim per 
country in a time step, the corresponding national urban population is divided by the country-
specific baseline urban population density of the former time step and corrected by the index. 
The latter ensures that when the urban population density in a country is projected to decline, 
the urban area claim increases, provided that there is a projected population increase. In this 
way, urban sprawl can be simulated with the model. Similarly, densification of urban areas is 
modelled in case of increasing population density.  
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2.2 Drivers of urban growth and spatial analysis 

To spatially simulate urban growth, the model requires spatial data of urban drivers; 
explanatory variables which relate to the processes involved with urban expansion. The 
qualification of these drivers underlying the spatial patterns of urban growth, and the 
quantification of these relations are both studies on their own. Past studies have identified 
several drivers of urban growth and are typically used in urban growth models (Santé et al. 
2010). For this project a spatial dataset is collected representing a number of explanatory 
variables for which it is widely accepted they have influence on urban growth and population 
distribution. Their characteristics are described below. In the process of selecting the variables, 
they needed to be available, or easily calculated, on global level and with sufficient spatial 
resolution, as the objective of the model is to simulate global urban growth at a high resolution. 
Even though policy-related factors are considered significant drivers of urban expansion 
(Barredo and Demicheli, 2003; Braimoh and Onishi, 2007), these data were not readily 
available on a global scale and they are therefore not included in the 2UP model.  

2.2.1 Pre-processing of explanatory variables 
 
Although elevation and slope are both often referred to and used as explanatory variables for 
spatial patterns of urban growth, with grid cells covering approximately 1 km2 these variables 
might not be as indicative on this scale. Flat terrain at high elevations could be equally suitable 
for urban area development as low elevated terrain. Also, the average slope of an area 
aggregated to 1 km2 is rather coarse for explaining suitability for urban growth. Terrain 
heterogeneity, which describes a combination of heights and multi-directional slopes within an 
area could contain more information on the suitability for urban growth. Therefore, the Terrain 
Roughness Index (TRI), an index that quantifies terrain heterogeneity, is used as covariate in 
the suitability mapping. TRI is calculated according to the method described by Riley et al. 
(1999), using a high resolution DEM. For this purpose a composite of SRTM V3 (Jarvis et al., 
2006) and GTOPO30 (USGS, 1996) elevation data was used. The SRTM V3 elevation map 
covers the globe between -60 and 60 degrees latitude, and is available with a spatial resolution 
of 1 arc second (approximately 30 m). The GTOPO (30 arc second resolution) map was used 
to complete the elevation map for +/- 60-90 degrees latitude by means of linear interpolation 
between known points in the grid. The resulting TRI map is processed at 30m resolution, with 
each grid cell containing a discrete index value for terrain roughness. To implement this map 
into the model it needed to be aggregated to 30 arcseconds. To avoid loss of detail as much 
as possible, for each TRI class (1-7) a map is compiled by counting the presence of that index 
value in the coarser grid cell. The seven maps in total are read into the model.    

Travel time to the nearest city centre is also considered an explanatory variable of urban 
growth and population distribution. A map with travel time (in minutes) to the nearest urban 
centre was derived from a distance analysis based on road density and settlement data. The 
Global Roads Inventory Project (GRIP) dataset v1 (PBL, 2009) was used, which contains a 
global road network. Populated places with more than 50,000 inhabitants were used as 
settlement map.  

Distance to urban area and distance to coast are also included in the 2UP model as covariates 
of urban growth. Both are based on the presence of surrounding urban land use, the latter 
also in combination with the proximity of the coastline. Future urban area, as well as these 
two derived variables are endogenously modelled in 2UP. For the spatial analysis, both distance 
variables are calculated for the baseline urban land use map (2010).  
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2.2.2 Spatial analysis 
 
The spatial allocation of urban land use and population distribution to the grid level is based 
on local suitability for urban land use and population growth. Suitability here can be considered 
as a proxy for the attractiveness at a location to attract or repel urban area and/or population, 
based on a set of physical and socio-economic characteristics. The suitability can be 
determined by quantifying the relation between the explanatory variables and urban land use. 
For this project, this is done using an inductive approach; the suitability is determined 
empirically with the aid of a spatial analysis using historical data of urban land use.  

The Atlas of Urban Expansion of the Lincoln Institute of Land Policy provides maps that 
represent urban land cover change between circa 1990 and circa 2000 for a sample of 120 
cities across the globe with more than 100,000 inhabitants and distributed over nine world 
regions (Angel et al. 2012). The urban land use for each city, with a spatial resolution of 30 
meters, was derived from Landsat images for the two time steps (Angel et al. 2005).  

For the spatial analysis, the set of explanatory variables are superimposed on the urban land 
use for each city, and their corresponding values are extracted for each urban grid cell. Urban 
area for both time steps is taken into consideration, except for the analysis with distance to 
built-up area. Here, only the urban area that was built between the two time periods is used; 
urban area around 1990 is used as urban contour to determine the distance between newly 
built and existing urban area. 

In the next step, histograms were plotted for each explanatory variable. In this way the 
relations between urban area and the covariates can be made visible. They all show an inverse 
relation, which implies that with higher values of terrain roughness, travel time, distance to 
urban area and coast, the abundance of (new) urban grid cells decreases. The relations that 
are found can be translated into probability frequency distributions. Only a few points are 
actually used from these distributions, as the resolution of 30 arsceconds is much coarser 
compared to the 30 meter resolution from which the relations were derived. This data is used 
in the 2UP model to transform the explanatory maps into suitability maps.  

Inherently to simulating land use forward in time, there is no other way than to assume 
constant relations between the geographical covariates and future urban growth. Therefore, 
the distribution of future urban area and population is, at least, partly based on the relations 
that were found in the historical spatial analysis.      

Although the Lincoln dataset is rather limited in global and temporal coverage, at the time of 
analysis it was the only source of urban area that included multiple time steps that was readily 
available. Since the release of the Global Human Settlement Layer, which includes four 
historical time steps and covers much of the world, the spatial analysis was repeated. The 
results show similar relations between the explanatory variables and historical urban land use.   

  



 
 

 PBL | 13 

2.2.3 Model calibration  
 
To ensure a more solid basis for simulating urban growth an additional, an advanced calibration 
procedure was carried out by Vrije Universiteit Amsterdam. They applied a statistics-based 
calibration procedure that links the historical urban land use patterns to the spatially explicit 
drivers of urban development, using the same global set of explanatory maps as in the spatial 
analysis (Andree and Koomen, 2017). The statistical analysis estimates the importance of this 
set of drivers for explaining historical urban land use. This assessment can be used to create 
the suitability maps that are needed in the model to simulate urban growth.  
 
In general, the results show that all explanatory variables significantly contribute to the 
prediction of urban area at a certain location, the most important driver being distance to 
urban area. The output of the regression analysis is used in the 2UP model to define the 
suitability maps and calibrate the urban growth simulation. This is helpful in generating 
plausible simulation results with the model. Further details of the applied method and 
discussion of the results can be found in the report by Andree and Koomen (2017). 

2.2.4 Model validation  
 

Data from the Global Human Settlement Layer (http://ghsl.jrc.ec.europa.eu/) from the JRC 
was used for validation of the model representing the past urban area and population. For 
urban area GHS Built-up grids were taken at the 38 meter resolution level for 1990, 2000 and 
2014 and resampled to 30 arcseconds. A limit of 50 percent was taken to be considered as 
urban area. Population was derived from the GHS population grids at 1km resolution for 1990, 
2000 and 2015. Claims for population per country were determined by summing the population 
in urban areas and released in the model. 

The same set of driving forces and relations have been used in the validation as in the model 
for calculations for the future. The distance to built-up area is considered endogenous, all other 
factors (Protected areas, Travel Time, TRI) were considered to be static. The index of HYDE-
curves was also used as the SSP-scenarios are also differentiating in the past with regard to 
mean population density. 

The model was runned for 25 years from 1990 to 2015 and the allocated urban area was 
compared with the 2014 urban area map. Visual comparison showed that the modelled urban 
areas were less patchy compared to the 2014 urban area map. A more quantitative approach 
was done by raster overlaying (sometimes called combining) of the 1990, 2014 and modelled 
2015 map. It showed at a worldwide scale a quite low percentage (depending on the scenario) 
of changed cells were modelled correctly related to the location. Despite these low percentages 
the general location of the urban cells were predicted quite well. For population comparison, 
the widely accepted ANOVA-method was used. 

 

  

http://ghsl.jrc.ec.europa.eu/
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2.3 Future distribution of urban area and population  

The core of the 2UP model and its primary objective is to disaggregate the scenario-based 
projected national-level urban population to 30 arcseconds and simulate urban expansion for 
194 countries and territories. Starting with the urban population baseline map, the modelling 
process consist of 3 main steps: (1) calculate the suitability representing the relative 
attractiveness for urban growth of each grid cell, (2) allocate projected urban area to grid cells 
in a country, and (3) disaggregate projected urban population change to urban grid cells. The 
modelling steps are repeated for each 10 year time interval and SSP. The model procedures 
are explained in more detail below.   

2UP is based on the Geo Data and Model Server (GeoDMS) modelling framework. This is an 
open source and flexible calculating engine that allows the handling, calculation and 
visualization of geographical data varying in resolution and extent. GeoDMS is particularly 
useful for global-scale modelling as it can handle large spatial grid-datasets and calculates 
relatively fast. It has the advantage that functionalities specifically for land use change 
modelling and allocation procedures are already built-in. Furthermore, its use has been proven 
in several land use modelling projects for the Netherlands and Europe, Land Use Scanner and 
EU CLUE Scanner respectively (e.g. Hilferink and Rietveld, 1999; Koomen and Borsboom-van 
Beurden, 2011; Lavalle et al. 2011). The framework is developed and made freely available 
by Object Vison (http://www.objectvision.nl/).  

In general, the land surface on earth is not considered completely habitable for population 
settlement. For this reason, a land mask is constructed from multiple spatial data layers to 
exclude unsuitable grid cells for habitation. This mask is processed by overlaying the following 
data layers: surface water and permanent snow and ice cover. The Water Bodies Map dataset 
from the ESA Land Cover Climate Change Initiative (Defourny, 2016) is used to mask global 
surface water. Permanent snow and ice cover is extracted from the MODIS Collection 4 global 
land cover dataset (Friedl et al. 2002) and these areas are excluded from the allocable land as 
well. The so-called ‘FreeLand’ is left over in the model as allocable. The processing of the 
baseline data (section 2.1.3) did not account for the excluded land described above. As a 
consequence, some slight overlap existed between the baseline urban land use and population 
maps, and the excluded grid cells. For modelling purposes, the baseline maps were kept as is. 
However, in the modelling process the excluded grid cells are omitted from receiving projected 
urban area and population growth. 

2.3.1 Suitability mapping 
 
Suitability represents the relative attractiveness for urban land use and population, and is used 
in the model to simulate urban growth. The global set of explanatory variables (section 2.2), 
provides the basis for creating the suitability maps, and is loaded into the model. With use of 
the probability frequency distributions that are derived from this spatial analysis based on 
historical urban land use (section 2.2.2), the variables are transformed into suitability maps. 
First, the probability distributions are read into the model as table. Then the explanatory 
variable maps are re-classified using the corresponding probability values.  

The seven maps with TRI, one for each TRI class, containing the frequency of the index values 
per 30’’ grid cell, are combined into one suitability map. This is done by multiplying the 
probability and the frequency values for each TRI class, and add them together in one map. 
The variables distance to urban area and coast are endogenously calculated within the model. 
Distance to urban area is an indicator based on the presence of urban land use at a location 
and its surroundings. It is calculated by taking the sum of the total amount of urban area in 
the neighbouring grid cells after applying a relative weight based on their distance to the 
central grid cell. The weight quickly decreases with increasing distance. The number of 
neighbouring cells that can contribute to this potential of each cell is restrained by applying a 

http://www.objectvision.nl/
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buffer of ±10 kilometres. Distance to coast is calculated similarly as distance to urban area, 
and used as an indicator of urban suitability. It is based on a combination of urban area and 
its distance to the coastline. The potential for urban area within a distance of 20 kilometres of 
the coast is considered higher than urban areas outsides this range. So, the weight of potential 
for urban area decreases with distance to the coast.  

The relative contribution of the individual suitability maps determines the total suitability at a 
location, which is eventually used in the allocation process. There are several approaches to 
weigh the suitability maps. One is to use expert judgement in combination with testing model 
behaviour. The second method is more robust and makes use of the calibrated regression 
coefficients from the calibration output (section 2.2.3). Both approaches are implemented in 
the model and can be applied when using the model.  

In case of the first approach, the weights that are given to the suitability maps are based on 
judgements expressed by experts in the field of land use change modelling and by testing the 
model behaviour. Distance to urban area was giving the most weight relative to the total 
suitability. Distance to coast was also given more weight relative to TRI and travel time. The 
latter two were weighted equally. 

The second method creates the final suitability map by adding up the values for the intercept 
and the local values of the explanatory variables multiplied by their estimated coefficients. The 
regression coefficients used are presented in Table 3.  

Table 3: Regression coefficients (Andree and Koomen, 2017) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3.2 Scenario-specific suitability 
  
The spatial distribution of urban expansion and population growth that is simulated by the 
model, is mainly driven by (1) national level population, (2) national level urbanization, (3) 
national level urban density change, and (4) suitability mapping. The first three factors are 
SSP specific and their differences are expressed in the model outcomes. The fourth factor, 
suitability mapping, is grid-level specific and primarily impacts the within country spatial 
patterns. However, it is static across the SSP scenarios.  

To implement variation between the SSP’s, regarding suitability, two additional geospatial data 
layers are added to the suitability mapping: Protected land and flood-prone area. For the 
protected land map the World Database on Protected Areas (WDPA) dataset is used (IUCN, 
2009). The flood-prone area map represents river flood extent (100 year return period) and 
was collected from the GLOFRIS framework (Ward et al. 2013; Winsemius et al. 2013). The 
two factors are selected because they can be used in a policy-related context; their influence 

Variables Estimate Std. Error z-value P value 

Intercept -8.25089 0.03411 -241.89 <2e-16 

Distance to urban area 2010 16.62688 0.06297 264.06 <2e-16 

Elevation -0.00066 0.00002 -29.48 <2e-16 

Slope 0.07033 0.00594 11.84 <2e-16 

Terrain roughness index 0.01376 0.00041 33.34 <2e-16 

Travel time 0.12743 0.00284 44.85 <2e-16 

Distance to coast 0.12631 0.00852 14.83 <2e-16 

Note: all estimates are significant at the 0.1% level (P< 0.001) 
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on local suitability for urban growth can be linked to the SSP narratives. SSP1 Sustainability 
describes a world in which significance is given to environmental protection, innovation and 
urbanization is well managed. SSP3 Regional Rivalry, on the other hand, pictures a world where 
low economic growth and innovation leads to little environmental protection and failing spatial 
planning. In the Middle of the Road (SSP2) scenario, the spatial pattern of development is 
consistent with historical patterns.  

From these narratives, a SSP specific parameter value is deduced to modify local suitability 
and to account for local differentiation between scenarios. The final suitability is determined 
by multiplying the parameter value with the local suitability value in case of protected land, 
flood prone area, or both. Thus, for example, when a grid cell is located within protected land 
the suitability is set to zero for SSP1 and urban growth is excluded from this area. In table 4 
SSP specific parameter values for suitability are presented for each combination of SSP and 
suitability factor.  

Table 4: SSP specific parameter values for suitability 

 
 
 
 
 
 

 

2.3.3 Allocation of urban area 
 
The allocation of urban area within a country is based on the projected urban area claim; 
derived from the HYDE database (section 2.1.4) and the suitability (by means of mean 
population density in urban area). For each time step, the projected amount of urban area 
(claim) is determined and the final suitability map is calculated. Thereafter, the urban area is 
allocated proportionally to the suitability map. This allocation procedure includes two steps: 
(1) the suitability within a country is sorted in a descending order, and (2) the urban area is 
allocated to the grid cells containing the highest suitability until the total claim is met. Both 
suitability and urban area are discrete across all cells, and as such each cell is either defined 
as urban or rural. For time step n + 1 the corresponding urban area claim is again entirely 
allocated.  

The allocation accounts for the area of grid cell and the area of available land within a grid cell 
(section 2.1.2). The base grid also includes grid cells with a percentage of land smaller than 
100. Therefore, the area of available land in a grid cell is used as weight in the allocation 
process. Consequently, the amount of urban area (km2) that is allocated to a grid cell depends 
on the actual area of land in a grid cell.   

2.3.4 Distribution of population change 
 
The allocation of population is based on the projected population change and suitability. The 
latter is assumed equal for both the allocation of urban area and population. The model is 
directed at downscaling urban population and it builds on the simulated urban land use map 
from the previous step. The distribution is done recursively, which means the urban population 
allocation in time step n is used in the simulation for time step n+1. Thereby, for each time 
step the projected change in urban population is allocated within the urban area, and 
proportionally to the relative distribution of suitability in the urban area. The grid cells with the 
highest suitability receive a proportionally larger share of the urban population change. Here 
also the allocation is weighted to the area of available land in a grid cell.  

Suitability factor SSP1 SSP2 SSP3 

Protected land 0 0.5 1 

Flood prone area 0 0.5 1 



 
 

 PBL | 17 

In more detail, the allocation procedure of urban population for each time step includes the 
following steps:  

1. The projected change in urban population in a country is calculated, which determines if 
there is a growth or decline of population. 

 
2. The suitability within the allocated urban area is calculated. 
 
3. A maximum urban population density is set for each grid cell. This maximum is based on 

the urban population in that grid cell and its surroundings. It is calculated by taking the 
total sum of urban population and its neighbouring cells in a perimeter of ±10 kilometres 
after applying a relative weight based on their distance to the central grid cell.  
 

4. To prevent that either very low or very high maximum densities are calculated, 
respectively the minimum and maximum density are constrained. To ensure urban 
population is able to grow in low density urban areas, the bottom limit is set by taking 
the mean urban population density in a country. On the other hand, exceptional growth 
in highly populated urban areas will be restricted by the maximum urban population 
density calculated at step 3. The mean urban density is calculated by multiplying the 
urban population density of a country with the corresponding HYDE index (see section 
2.1.4). 

 
5. The urban population change, calculated in step 1, is allocated to the urban area and 

proportionally to the suitability within the urban area. This is an iterative process; 
population is allocated to grid cells with the highest suitability for which the maximum 
density is not yet reached and continues until the national-level urban population claim is 
met.  

 
6. In case there is projected population decline in a country, the suitability within the urban 

area is inverted. This makes sure the depopulation will occur at the fringes of the urban 
areas first before the city centres.  

 
The remaining rural population is also disaggregated to the grid level. Because the model is 
not aimed at the simulation of developments in rural area and population, this is done in a 
straightforward way. The projected national-level rural population is distributed proportionally 
to the population distribution of LandScan 2010 (Bright et al. 2010). Rural population is only 
allocated to none-urban areas.  

2.3.5 Disaggregation of GDP projections 
 
When presented on global scale, most datasets on economic development are still available 
mainly at national level. For spatial analysis, the national figures are often disaggregated to 
the grid-level according to population density across a country. Only recently such data can 
also be found on sub-national scale, which makes it possible to achieve higher precision than 
country scale. Gennaioli et al. (2012) developed a sub-national dataset (tabulated) which 
includes Gross Domestic Product (GDP) per capita in constant 2005 international USD. The 
database consist of 1569 sub-national regions (i.e. province, state etc. depending on country 
in question) across 110 countries. Although sub-national GDP data is missing for most of the 
African continent, the data covers 74% of the world’s land surface and 96% of its GDP. The 
temporal coverage is also country specific and ranges from 1960-2010. 

Disaggregation of the national GDP projections to the grid-level is based on the sub-national 
data from this dataset whenever possible, in combination with national data from the SSP 
database. In this way the spatial variation in economic development within countries is taken 
into account, and it is aimed for an enhanced global gridded dataset of GDP.   
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The table with GDP per capita data was spatially joined with the country base grid, based on 
GADM country boundaries. Because the latter also includes first level administrative sub-
national boundaries, the regional GDP data could therefore be linked to the base grid. The 
division of sub-national regions in the original database did not perfectly match the regional 
division in the GADM base grid. Therefore, several manual adjustments were necessary to 
correct for these deviations. In this process, lower level subdivision of regions in the original 
data needed to be aggregated to one region in the base grid in some cases. Consequently, the 
number of sub-national regions in the end result is lower, but the coverage remained the same. 
When available, the reported regional value for GDP per capita for 2010 is used, followed by 
the most recent year in the sub-national database. In case of a missing value, national GDP 
per capita (SSP database) is used to fill the gaps.  

The following calculation steps are included in the disaggregation process: 

1. For the development of the baseline grid for 2010, the first step is to assign sub-national 
GDP per capita to the corresponding regions of the base grid. If there is no data for a 
region, the national GDP per capita is assigned to that region. If no regional data is 
available at all, then national GDP per capita is assigned to every region in that country. 

 
2. The sub-national GDP per capita is not used directly but as an index to scale the national 

GDP per capita within a country. This ensures that the national GDP figures as reported by 
the SSP database are conserved. To derive the index values for each region, the ratio 
between the sub-national GDP per capita and the national GDP per capita is calculated. 

 
3. The sub-national GDP is then calculated by multiplying the national GDP per capita 

reported by the SSP database with gridded population count (section 2.3.4), and by the 
calculated index value (step 2) to correct for the regional differences within a country. 

 
4. To ensure consistency between the national and sub-national data, the sub-national GDP 

needs to be corrected by the ratio between national GDP and the sum of the sub-national 
GDP in a country. In this way the sum of sub-national GDP equals the total GDP of a 
country as reported by the SSP database.  

 
5. Steps 2 to 4 are repeated for each successive time step, and for each SSP. The future 

development of sub-national GDP is based on the growth factor of national GDP per capita 
between two successive years in the SSP database. For time step n + 1, sub-national GDP 
per capita is calculated by multiplying the growth factor with sub-national GDP per capita 
at time step n.  

 
The final global grids represent GDP per grid cell. They include a combination of sub-national 
data whenever possible, and national GDP figures in case of missing data.    



 
 

 PBL | 19 

3 Results 
In this chapter, a few examples are presented which illustrate the outcomes of the 2UP model. 
The spatially explicit global projections of population growth (Figure 2) and Gross Domestic 
Product (Figure 3) are a necessary component in the assessment of exposure and vulnerability 
to hazards. The outcomes of 2UP are a step forward in global scale spatially explicit population 
and GDP scenarios, and they are potentially very useful to facilitate ongoing global change 
research.    

3.1 Global projections of population growth 

Figure 2. (a) Projected population density for SSP2 (2050), and (b) corresponding 
projected population change (2010-2050) 

a

b
Decline Growth 

Population 
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3.2 Global projections of Gross Domestic Product                                                                                       

 

Figure 3. Downscaling projected GDP from (a) national to (b) subnational, and (c) 
grid level   

a

b
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