Pricing of Cashflow Certainty Evidence from Private Commercial Real Estate Transactions

Bas Hilgers¹², Jan Rouwendal¹

¹Vrije Universiteit Amsterdam, ²Cushman & Wakefield PLC

PBL Ruimtedialoog, 2022

Recent market volatility again highlights **importance of security** of income streams on the value of commercial property.

Value investment being represented by the present value of its expected income discounted at a rate that reflects the **risk**.

Perception of investors towards riskiness of the cashflows that individual property potentially generate are paramount in pricing.

All well known within practice, however, contribution of risk (certainty) **factors at property level** have limited academic coverage...

$\mathsf{Risk} \Longleftrightarrow \mathsf{Return}$

Table: Expected price effects

		Temporal dynamics		Spatial dynamics		
	Overall	Upward	Downward	Center	Periphery	
Occupancy						
Long- vs short leases	+	0	++	0	++	
Occupancy vs vacancy	+	0	++	0	++	
Covenant strength						
Tenant quality	+	0	++	0	++	
Reversionary potential	+	0	++	0	++	

The **aim** of this study is to empirically *investigate the impact of cashflow related certainty factors on the pricing of commercial real estate.*

We **hypothesize** that differences in these 'lease' characteristics relate to some kind of cashflow risk which in turn significantly affects the value of individual assets. These effect vary significantly over space and time.

Expectations are that, all other things considered equal, investors are willing to pay a premium for assets that have more certainty in obtaining the expected income over the holding period.

Or perhaps investors are not that well-informed and/or rational...

This study adds to the literature in three important aspects:

- Contribution of asset-level certainty factors to the pricing of CRE does not have a major coverage in the academic literature
- First paper found to investigate the dynamics/stability of such parameters over space and time
- Majority of the studies focus on prime markets in the US/UK while other countries do not have major coverage

Introduction: Outline

- Motivation and Research Design
- O Theoretical Framework
 - The real estate market
 - Asset pricing
 - Hedonic price model
 - Asymmetric risk profile
- Oata and Descriptives
 - Data sources
 - Descriptive statistics
- Preliminary Results
 - General results
 - Temporal dynamics
 - Spatial dynamics
- Onclusion and Discussion

Theoretical Framework: Real Estate Market

Within real estate we typically identify two main markets where prices are formed (DiPasquale et al., 1992; Geltner et al., 2013).

Space Market

- Interaction usage demand (tenants), current stock supply (brokers)
- Results in current operating cashflows
- Market highly segmented; tenants have specific needs
- Rental prices can differ greatly over space even for similar properties

Asset Market

- Market where prices are formed via investors on both buy/sell side
- Results in required rate of return
- Market highly integrated; investors don't care where cash is from
- Two properties perceived similar risk could have similar rates

Theoretical Framework: Asset Pricing

Asset pricing model (Baum, 1988; Fisher, 1930; Gordon, 1962):

$$P = \frac{R}{k} \qquad \text{where} \quad k = Rf + RP - g + D \tag{1}$$

Jackson et al. (2011) and Crosby et al. (2016) further specify RP:

Spatial scale of influence		Returns to reflect	Drivers	Variables
Macro	Investment and capital markets	RFR	Expected inflation, time preference	National level measures such as treasury bill rates, gross redemption yields on government bonds, and actual and expected inflation rates
	Real estate market	Ť	Performance and volatility of real estate relative to other assets	Macro-economic and industry esti- mates of income and capital returns and key drivers in asset markets at
	Sector and Location	d growth cctations	Market specific factors, eco- nomic/ catchment profile	national, local and submarket levels
	Stock/asset	k an expe	Tenant	Credit worthiness
		Ris	Lease	Multi/single-let, review/user clause, period to expiry/review
*			Location	Micro location/accessibility
Micro		*	Building	Sustainability rating, obsolescence

Empirical Framework: Hedonic Price Model

Basic hedonic price model (log-log):

$$\ln P_{i\ell t} = \omega \ln R_{i\ell t} + \mathbf{\Phi}(\mathbf{L}_{i\ell t}) + \mathbf{x}'_{i\ell t} \beta + \eta_{\ell} + \mu_{t} + \epsilon_{i\ell t}$$
(2)

where:

- P is the transaction price of property i at location ℓ
- R denotes the rent (NOI) at time t
- $\Phi(L)$ is some function of certainty characteristics L
- *x*, η , μ represent other controls

Rewriting towards the cap rate k as dependent variable:

$$\ln\left(\frac{P_{i\ell t}}{R_{i\ell t}}\right) = \Phi(\mathbf{L}_{i\ell t}) + x'_{i\ell t}\beta + \eta_{\ell} + \mu_{t} + \epsilon_{i\ell t} \quad (=\frac{1}{k})$$
(3)

Note that NOI abstracts away some heterogeneity (Francke et al., 2021)

Data consists of investment transactions from private commercial real estate market (2010-2022). Sources include, but not limited to, RCA, Brainbay, StiVAD and internal Cushman&Wakefield data.

Table: Variables Descriptions

Label	Definition	Ехр
Capitalization factor	Transaction price after transfer cost over NOI	NA
Lease term	Weighted average remaining lease term incl vacancy	+
Initial occupancy	Occupancy at time of sale as percentage of rental value	+
Age	Number of years between transaction and year constructed	-
Floor area	Lettable floor area of the property in square meters	+
Energy label	Sustainability indicator and proxy for property quality	+
Submarket	Expert delineated submarkets	NA
Period	Calendar year categories from 2010 through 2022	NA

Data: Map Transactions Amsterdam

Stack:

- Databricks (Code/Compute)
- Apache Sedona (Spatial Processing)
- Kepler/Carto (Visualize)

Data: Descriptives Statistics

		N	Mean	SD	Min	Max	Kurt	Skew
Office	Capitalization factor Lease term Initial occupancy	2,971	10.6 3.9 0.7	6.6 3.4 0.3	2.0 0.0 0.0	41.8 21.1 1.0	3.0 3.1 0.3	1.2 1.5 -1.2
Industrial	Capitalization factor Lease term Initial occupancy	653	14.1 5.2 0.8	5.4 5.0 0.3	3.2 0.0 0.0	35.1 22.2 1.0	0.9 1.3 2.3	0.8 0.6 -1.9
Retail	Capitalization factor Lease term Initial occupancy	1,204	16.9 4.4 0.8	4.8 4.0 0.2	5.5 0.0 0.0	36.3 24.3 1.0	1.3 1.1 2.8	0.2 0.9 -2.4

Table: Descriptive Statistics

Results: General

	Office		Industrial		Retail	
	(1)	(2)	(3)	(4)	(5)	(6)
Lease term (<i>log</i>)	0.26*** (0.00)	-	0.13 ^{***} (0.00)	-	0.10 ^{***} (0.00)	-
Occupancy	-	0.63 ^{***} (0.00)	-	0.38*** (0.00)	-	0.25*** (0.00)
Floor area (<i>log</i>)	-0.33***	-0.36***	-0.19***	-0.19***	-0.22***	-0.23***
Age (log)	0.60	0.63	0.91**	0.89**	0.56*	0.49
Age^2 (log)	-0.27	-0.29	-0.49**	-0.48^{**}	-0.26^{*}	-0.22
Energy label	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Submarket FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	2,971	2,971	653	653	1,204	1,204
Adj-R ²	0.54	0.48	0.65	0.64	0.50	0.47

Table: Results with Capitalization Factor (log) as Dependent Variable

Results: Price Dynamics Time

Figure: Stability of Coefficients over Time [WAULT]

Results: Price Dynamics Space

Table: Regression Results: Spatial Dynamics

	Office	Retail	Industrial
	(7)	(8)	(9)
Lease Term [WAULT]			
WAULT $ imes$ Large city decentral	0.01 (0.86)	-	-
WAULT $ imes$ Small city central	0.01 (0.73)	-	-
WAULT $ imes$ Small city decentral	0.03 (0.21)	-	-
Initial Occupancy [OCC]			
OCC $ imes$ Large city decentral	-0.14 (0.24)	-	-
OCC imes Small city central	-0.18 (0.29)	-	-
$OCC \times Small city decentral$	-0.15 (0.33)	-	-
Observations	2,971	-	-
Adj-R ²	0.34	-	-

Working on how to define 'centrality' for retail and Industrial.

Preliminary conclusions:

- Statistically and Economically significant effects for lease term and occupancy overall
- Significant differences over time with less premium in stable markets and more in periods of economic distress.
- Spatially no significant effects found in none of the segments, but requires more study.

What's Next?

- Collect more data (selection bias)
- Investigate effects of covenant strength
- Add robustness tests
- Collaborate with other countries (Cushman & Wakefield)

Baum, A. (1988). Real estate stock selection and attribute preferences. Journal of Property Research, 28(4), 317–339. https://doi.org/10.1080/09599916.2011.586469

Crosby, N., Jackson, C., & Orr, A. (2016). Refining the real estate pricing model. Journal of Property Research, 33(4), 332–358. https://doi.org/10.1080/09599916.2016.1237539

DiPasquale, D., & Wheaton, W. C. (1992). The markets for real estate assets and space: A conceptual framework. *Real Estate Economics*, 20(2), 181–198. https://doi.org/10.1111/1540-6229.00579

- Fisher, I. (1930). Theory of interest: As determined by impatience to spend income and opportunity to invest it. Augustusm Kelly Publishers, Clifton.
- Francke, M., & van de Minne, A. (2021). Daily appraisal of commercial real estate: A new mixed frequency approach. *Real Estate Economics*, (n/a). https://doi.org/10.1111/1540-6229.12378
- Geltner, D., Miller, N., Clayton, J., & Eichholtz, P. (2013). *Commercial real* estate analysis and investments. South-Western Educational Pub.

Gordon, M. J. (1962). The investment, financing, and valuation of the corporation. RD Irwin.

Jackson, C., & Orr, A. (2011). Real estate stock selection and attribute preferences. Journal of Property Research, 28(4), 317–339. https://doi.org/10.1080/09599916.2011.586469