Will climate change affect ectoparasite species ranges?
Main conclusions: The potential for successful translocations of ticks and their pathogens from Africa to the rest of the world is likely to increase over the next 100 years. Although the general trend is one of range expansion, there are winners and losers among tick species in each scenario, suggesting that tick community composition will be disrupted substantially by climate change. If this is also typical of other invertebrates, then climate change will disrupt not only the geographic location of communities but also their structure. Changes in tick communities are also likely to influence tick-borne pathogens.
Aim
Over the next 100 years, human-driven climate change and resulting changes in species occurrences will have global impacts on biodiversity, ecosystem function, and human health. Here we examine how climate change may affect the occurrences of tick species in Africa and alter the suitability of habitat outside Africa for African ticks.
Location
Africa and the world.
Methods
We predicted continental and global changes in habitat suitability for each of 73 African tick species, using multiple regression models in different climate change scenarios that cover a wide range of uncertainty.
Results
Global habitat suitability improves for nearly all tick species under each of a representative range of eight climate change scenarios. Depending on the scenario, African tick species experience an average increase in global habitat suitability of between 1 million and 9 million square kilometres between 1990 and 2100.
Authors
Specifications
- Publication title
- Will climate change affect ectoparasite species ranges?
- Publication date
- 1 September 2006
- Publication type
- Publication
- Magazine
- Global Ecol Biogeography 2006; 15(5):486-97
- Product number
- 91794