Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models

In river basins, soils, groundwater, riparian zones and floodplains, streams, rivers, lakes and reservoirs act as successive filters in which the hydrology, ecology and biogeochemical processing are strongly coupled and together act to retain a significant fraction of the nutrients transported.

Modelling river biogeochemistry

This paper compares existing river ecology concepts with current approaches to describe river biogeochemistry, and assesses the value of these concepts and approaches for understanding the impacts of interacting global change disturbances on river biogeochemistry. Through merging perspectives, concepts, and modelling techniques, we propose integrated model approaches that encompass both aquatic and terrestrial components in heterogeneous landscapes.

In this model framework, existing ecological and biogeochemical concepts are extended with a balanced approach for assessing nutrient and sediment delivery, on the one hand, and nutrient in-stream retention on the other hand.

Authors

A. F. Bouwman, M. F. P. Bierkens, J. Griffioen, M. M. Hefting, J. J. Middelburg, H. Middelkoop and C. P. Slomp

Specifications

Publication title
Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models
Publication date
2 January 2013
Publication type
Publication
Magazine
Biogeosciences, 10, 1–23
Product number
1346